0000000001224115

AUTHOR

V. Gimenez

Nonperturbative renormalization in coordinate space

We present an exploratory study of a gauge-invariant non-perturbative renormalization technique. The renormalization conditions are imposed on correlation functions of composite operators in coordinate space on the lattice. Numerical results for bilinears obtained with overlap and O(a)-improved Wilson fermions are presented. The measurement of the quark condensate is also discussed.

research product

Non-perturbatively renormalised light quark masses from a lattice simulation with Nf=2

Abstract We present results for the light quark masses obtained from a lattice QCD simulation with N f = 2 degenerate Wilson dynamical quark flavours. The sea quark masses of our lattice, of spacing a ≃ 0.06 fm , are relatively heavy, i.e., they cover the range corresponding to 0.60 ≲ M P / M V ≲ 0.75 . After implementing the non-perturbative RI-MOM method to renormalise quark masses, we obtain m ud MS ¯ ( 2 GeV ) = 4.3 ± 0.4 −0 +1.1 MeV , and m s MS ¯ ( 2 GeV ) = 101 ± 8 −0 +25 MeV , which are about 15% larger than they would be if renormalised perturbatively. In addition, we show that the above results are compatible with those obtained in a quenched simulation with a similar lattice.

research product

First lattice calculation of the B-meson binding and kinetic energies

We present the first lattice calculation of the B-meson binding energy $\labar$ and of the kinetic energy $-\lambda_1/2 m_Q$ of the heavy-quark inside the pseudoscalar B-meson. This calculation has required the non-perturbative subtraction of the power divergences present in matrix elements of the Lagrangian operator $\bar h D_4 h$ and of the kinetic energy operator $\bar h \vec D^2 h$. The non-perturbative renormalisation of the relevant operators has been implemented by imposing suitable renormalisation conditions on quark matrix elements, in the Landau gauge. Our numerical results have been obtained from several independent numerical simulations at $\beta=6.0$ and $6.2$, and using, for t…

research product

Light hadrons from lattice QCD with light (u, d), strange and charm dynamical quarks

We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N_f = 2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at two values of the lattice spacing a~0.078 fm and a~0.086 fm with lattice sizes ranging from L~1.9 fm to L~2.8 fm. We measure with high statistical precision the light pseudoscalar mass m_PS and decay constant f_PS in a range 270 < m_PS < 510 MeV and determine the low energy parameters f_0, l_3 and l_4 of SU(2) chiral perturbation theory. We use the two values of the lattice spacing, several lattice sizes as well as different values of…

research product

B parameters of the complete set of matrix elements of delta B = 2 operators from the lattice

We compute on the lattice the ``bag'' parameters of the five (Delta B = 2) operators of the supersymmetric basis, by combining their values determined in full QCD and in the static limit of HQET. The extrapolation of the QCD results from the accessible heavy-light meson masses to the B-meson mass is constrained by the static result. The matching of the corresponding results in HQET and in QCD is for the first time made at NLO accuracy in the MSbar(NDR) renormalization scheme. All results are obtained in the quenched approximation.

research product

Light Quenched Hadron Spectrum and Decay Constants on different Lattices

In this paper we study O(2000) (quenched) lattice configurations from the APE collaboration, for different lattice volumes and for 6.0 \le beta \le 6.4 using both the Wilson and the SW-Clover fermion actions. We determine the light hadronic spectrum and meson decay constants and study the mesonic dispersion relation. We extract the hadronic variable J and the strange quark mass in the continuum at the next-to-leading order obtaining m_s^{MSbar}(mu=2 GeV) = 122 +/- 20 MeV. A study is made of their dependence on lattice spacing. We implement a newly developed technique to extract the inverse lattice spacing using data at the simulated values of the quark mass (i.e. at masses around the strang…

research product

B-physics computations from Nf=2 tmQCD

We present an accurate lattice QCD computation of the b-quark mass, the B and Bs decay constants, the B-mixing bag-parameters for the full four-fermion operator basis, as well as estimates for \xi and f_{Bq}\sqrt{B_q} extrapolated to the continuum limit and the physical pion mass. We have used Nf = 2 dynamical quark gauge configurations at four values of the lattice spacing generated by ETMC. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out using ratios of physical quantities computed at nearby quark masses, having an exactly known infinite mass limit.

research product

Matrix elements of decays

We present a numerical computation of matrix elements of ?I = 3/2 K ? ?? decays by using Wilson fermions. In order to extrapolate to the physical point we work at unphysical kinematics and we resort to Chiral Perturbation Theory at the next-to-leading order. In particular we explain the case of the electroweak penguins 07,8 which can contribute significantly in the theoretical prediction of sol|??/?. The study is done at ? = 6.0 on a 243 × 64 lattice.

research product

BK-parameter fromNf=2twisted mass lattice QCD

We present an unquenched Nf=2 lattice computation of the B K parameter which controls K0-K0 oscillations. A partially quenched setup is employed with two maximally twisted dynamical (sea) light Wi ...

research product

New results from lattice QCD: Non-perturbative renormalization and quark masses

For the first time, we compute non-perturbatively, i.e. without lattice perturbation theory, the renormalization constants of two-fermion operators in the quenched approximation at $\beta=6.0$, 6.2 and 6.4 using the Wilson and the tree-level improved SW-Clover actions. We apply these renormalization constants to fully non-perturbatively estimate quark masses in the $\bar{MS}$ scheme from lattice simulations of both the hadron spectrum and the Axial Ward Identity in the quenched approximation. Some very preliminary unquenched Wilson results obtained from the gluon configurations generated by the T$\chi$L Collaboration at $\beta=5.6$ and $N_{f}=2$ are also discussed.

research product

Quark masses and the chiral condensate with a non-perturbative renormalization procedure

We determine the quark masses and the chiral condensate in the MSbar scheme at NNLO from Lattice QCD in the quenched approximation at beta=6.0, beta=6.2 and beta=6.4 using both the Wilson and the tree-level improved SW-Clover fermion action. We extract these quantities using the Vector and the Axial Ward Identities and non-perturbative values of the renormalization constants. We compare the results obtained with the two methods and we study the O(a) dependence of the quark masses for both actions.

research product

Up, down, strange and charm quark masses withNf=2+1+1twisted mass lattice QCD

Abstract We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with N f = 2 + 1 + 1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210 – 450 MeV , allowing for accurate continuum limit and controlled chiral extrapolation. The quark …

research product

Light meson physics from maximally twisted mass lattice QCD

40 pages, 5 figures, 8 tables, 3 appendix.-- PACS: 11.15.Ha; 12.38.Gc; 12.39.Fe

research product

Dynamical twisted mass fermions with light quarks: simulation and analysis details

In a recent paper [hep-lat/0701012] we presented precise lattice QCD results of our European Twisted Mass Collaboration (ETMC). They were obtained by employing two mass-degenerate flavours of twisted mass fermions at maximal twist. In the present paper we give details on our simulations and the computation of physical observables. In particular, we discuss the problem of tuning to maximal twist, the techniques we have used to compute correlators and error estimates. In addition, we provide more information on the algorithm used, the autocorrelation times and scale determination, the evaluation of disconnected contributions and the description of our data by means of chiral perturbation theo…

research product

Non-perturbative renormalisation of four fermion operators and B0 −B0 bar mixing with Wilson fermions

We present new results for the renormalisation and subtraction constants for the four fermion DeltaF = 2 operators, computed non-perturbatively in the RI-MOM scheme (in the Landau gauge). From our preliminary analysis of the lattice data at beta = 6.45, for the B-0 - B-0,mixing bag-parameter we obtain B-B(RGI) = 1.46(7)(1).

research product

Combined relativistic and static analysis for all DB = 2 operators

We analyse matrix elements of Delta B=2 operators by combining QCD results with the ones obtained in the static limit of HQET. The matching of all the QCD operators to HQET is made at NLO order. To do that we have to include the anomalous dimension matrix up to two loops, both in QCD and HQET, and the one loop matching for all the Delta B=2 operators. The matrix elements of these operators are relevant for the prediction of the B-\bar B mixing, B_s meson width difference and supersymmetric effects in Delta B=2 transitions.

research product

Nonperturbative renormalization of quark bilinears

We compute non-perturbatively the renormalization constants of quark bilinears on the lattice in the quenched approximation at three values of the coupling beta=6/g_0^2=6.0,6.2,6.4 using both the Wilson and the tree-level improved SW-Clover fermion action. We perform a Renormalization Group analysis at the next-to-next-to-leading order and compute Renormalization Group invariant values for the constants. The results are applied to obtain a fully non-perturbative estimate of the vector and pseudoscalar decay constants.

research product

Kaon weak matrix elements with Wilson fermions

We present results of several numerical studies with Wilson fermions relevant for kaon physics. We compute the B_K parameter by using two different methods and extrapolate to the continuum limit. Our preliminary result is B_K(2 GeV)=0.66(7). Delta I=3/2 K->pi pi matrix elements are obtained by using the next-to-leading order expressions derived in chiral perturbation theory in which the low energy constants are determined by the lattice results computed at unphysical kinematics. From the simulation at beta=6.0 our (preliminary) results read: _{I=2}=0.14(1)(1) GeV^3 and _{I=2}=0.69(6)(6) GeV^3.

research product

Light Quark Masses from Lattice Quark Propagators at Large Momenta

We compute non-perturbatively the average up-down and strange quark masses from the large momentum (short-distance) behaviour of the quark propagator in the Landau gauge. This method, which has never been applied so far, does not require the explicit calculation of the quark mass renormalization constant. Calculations were performed in the quenched approximation, by using O(a)-improved Wilson fermions. The main results of this study are ml^RI(2GeV)=5.8(6)MeV and ms^RI(2GeV)=136(11)MeV. Using the relations between different schemes, obtained from the available four-loop anomalous dimensions, we also find ml^RGI=7.6(8)MeV and ms^RGI=177(14)MeV, and the MSbar-masses, ml^MS(2GeV)=4.8(5)MeV and …

research product

Dynamical twisted mass fermions with light quarks

We present results of dynamical simulations with 2 flavours of degenerate Wilson twisted mass quarks at maximal twist in the range of pseudo scalar masses from 300 to 550 MeV. The simulations are performed at one value of the lattice spacing a \lesssim 0.1 fm. In order to have O(a) improvement and aiming at small residual cutoff effects, the theory is tuned to maximal twist by requiring the vanishing of the untwisted quark mass. Precise results for the pseudo scalar decay constant and the pseudo scalar mass are confronted with chiral perturbation theory predictions and the low energy constants F, \bar{l}_3 and \bar{l}_4 are evaluated with small statistical errors.

research product

Non-perturbative renormalization of lattice operators in coordinate space

We present the first numerical implementation of a non-perturbative renormalization method for lattice operators, based on the study of correlation functions in coordinate space at short Euclidean distance. The method is applied to compute the renormalization constants of bilinear quark operators for the non-perturbative O(a)-improved Wilson action in the quenched approximation. The matching with perturbative schemes, such as MS-bar, is computed at the next-to-leading order in continuum perturbation theory. A feasibility study of this technique with Neuberger fermions is also presented.

research product

An exploratory lattice study of decays at next-to-leading order in the chiral expansion

Abstract We present the first direct evaluation of Δ I = 3 / 2 K → π π matrix elements with the aim of determining all the low-energy constants at NLO in the chiral expansion. Our numerical investigation demonstrates that it is indeed possible to determine the K → π π matrix elements directly for the masses and momenta used in the simulation with good precision. In this range however, we find that the matrix elements do not satisfy the predictions of NLO chiral perturbation theory. For the chiral extrapolation we therefore use a hybrid procedure which combines the observed polynomial behavior in masses and momenta of our lattice results, with NLO chiral perturbation theory at lower masses. …

research product

Extraction of K --> pi pi matrix elements with Wilson fermions

We present the status of a lattice calculation for the K-->pipi matrix elements of the (delta S=1) effective weak Hamiltonian, directly with two pion in the final state. We study the energy shift of two pion in a finite volume both in the I=0 and I=2 channels. We explain a method to avoid the Goldstone pole contamination in the computation of renormalization constants for (delta I=3/2) operators. Finally we show some preliminary results for the matrix elements of (delta I=1/2) operators. Our quenched simulation is done at beta=6.0, with Wilson fermions, on a (24^3 X 64) lattice.

research product

A Theoretical Prediction of the Bs-Meson Lifetime Difference

We present the results of a quenched lattice calculation of the operator matrix elements relevant for predicting the Bs width difference. Our main result is (\Delta\Gamma_Bs/\Gamma_Bs)= (4.7 +/- 1.5 +/- 1.6) 10^(-2), obtained from the ratio of matrix elements, R(m_b)=/=-0.93(3)^(+0.00)_(-0.01). R(m_b) was evaluated from the two relevant B-parameters, B_S^{MSbar}(m_b)=0.86(2)^(+0.02)_(-0.03) and B_Bs^{MSbar}(m_b) = 0.91(3)^(+0.00)_(-0.06), which we computed in our simulation.

research product

K --> pi pi matrix elements beyond the leading-order chiral expansion

We propose an approach for calculating $K\to\pi\pi$ decays to the next-to-leading order in chiral expansion. A detailed numerical study of this approach is being performed.

research product

B-physics from Nf=2 tmQCD: the Standard Model and beyond

Carrasco, Nuria et al.

research product

B-parameters for ΔS=2 supersymmetric operators

We present a calculation of the matrix elements of the most general set of DeltaS=2 dimension-six four-fermion operators. The values of the matrix elements are given in terms of the corresponding B-parameters. Our results can be used in many phenomenological applications, since the operators considered here give important contributions to K^0--K^0bar mixing in several extensions of the Standard Model (supersymmetry, left-right symmetric models, multi-Higgs models etc.). The determination of the matrix elements improves the accuracy of the phenomenological analyses intended to put bounds on basic parameters of the different models, as for example the pattern of the sfermion mass matrices. Th…

research product

Nonperturbative renormalization constants and light quark masses

We present the results of an extensive non-perturbative calculation of the renormalization constants of bilinear quark operators for the non-perturbatively O(a)-improved Wilson action. The results are obtained at four values of the lattice coupling, by using the RI/MOM and the Ward identities methods. A new non-perturbative renormalization technique, which is based on the study of the lattice correlation functions at short distance in x-space, is also numerically investigated. We then use our non-perturbative determination of the quark mass renormalization constants to compute the values of the strange and the average up/down quark masses. After performing an extrapolation to the continuum …

research product

Non-Perturbative Renormalization of Lattice Four-Fermion Operators without Power Subtractions

A general non-perturbative analysis of the renormalization properties of $\Delta I=3/2$ four-fermion operators in the framework of lattice regularization with Wilson fermions is presented. We discuss the non-perturbative determination of the operator renormalization constants in the lattice Regularization Independent (RI or MOM) scheme. We also discuss the determination of the finite lattice subtraction coefficients from Ward Identities. We prove that, at large external virtualities, the determination of the lattice mixing coefficients, obtained using the RI renormalization scheme, is equivalent to that based on Ward Identities, in the continuum and chiral limits. As a feasibility study of …

research product

NNLO Unquenched Calculation of the b Quark Mass

By combining the first unquenched lattice computation of the B-meson binding energy and the two-loop contribution to the lattice HQET residual mass, we determine the (\bar{{MS}}) (b)-quark mass, (\bar{m}_{b}(\bar{m}_{b})). The inclusion of the two-loop corrections is essential to extract (\bar{m}_{b}(\bar{m}_{b})) with a precision of ({\cal O}(\Lambda^{2}_{QCD}/m_{b})), which is the uncertainty due to the renormalon singularities in the perturbative series of the residual mass. Our best estimate is (\bar{m}_{b}(\bar{m}_{b}) = (4.26 \pm 0.09) {\rm GeV}), where we have combined the different errors in quadrature. A detailed discussion of the systematic errors contributing to the final number …

research product

Lattice quark masses: a non-perturbative measurement

We discuss the renormalization of different definitions of quark masses in the Wilson and the tree-level improved SW-Clover fermionic action. For the improved case we give the correct relationship between the quark mass and the hopping parameter. Using perturbative and non-perturbative renormalization constants, we extract quark masses in the $\MSbar$ scheme from Lattice QCD in the quenched approximation at $\beta=6.0$, $\beta=6.2$ and $\beta=6.4$ for both actions. We find: $\bar{m}^{\MSbar}(2 GeV)=5.7 \pm 0.1 \pm 0.8$ MeV, $m_s^{\MSbar}(2GeV)= 130 \pm 2 \pm 18 $ MeV and $m_c^{\MSbar}(2 GeV) = 1662\pm 30\pm 230$ MeV.

research product

Kaon mixing beyond the SM from N-f=2 tmQCD and model independent constraints from the UTA

We present the first unquenched, continuum limit, lattice QCD results for the matrix elements of the operators describing neutral kaon oscillations in extensions of the Standard Model. Owing to the accuracy of our calculation on Delta S = 2 weak Hamiltonian matrix elements, we are able to provide a refined Unitarity Triangle analysis improving the bounds coming from model independent constraints on New Physics. In our non-perturbative computation we use a combination of N-f = 2 maximally twisted sea quarks and Osterwalder-Seiler valence quarks in order to achieve both O(a)-improvement and continuum-like renormalization properties for the relevant four-fermion operators. The calculation of t…

research product

B-parameters for $\Delta S = 2$ SUSY Operators

We present the first lattice measurement, using Non Perturbative Renormalization Method, of the B-parameters of the dimension-six four-fermion operators relevant for the supersymmetric corrections to the $\Delta S=2$ transitions.

research product

Magnetic moments of heavy baryons

6 páginas, 2 figuras, 4 tablas.-- PACS number(s): 12.39.Fe, 12.39.Hg, 14.20.Lq, 14.20.Mr

research product

Quenched and first unquenched lattice HQET determination of the B-s-meson width difference

We present recent results for the prediction of the Bs lifetime difference from lattice Heavy Quark Effective Theory simulations. In order to get a next-to-leading order result we have calculated the matching between QCD and HQET and the two-loop anomalous dimensions in the HQET for all the \Delta B=2 operators, in particular for the operators which enter the width difference. We present results from quenched and, for the first time, from unquenched simulations. We obtain for the Bs lifetime difference, (\Delta\Gamma_Bs/\Gamma_Bs)^{(que.)}=(5.1+/- 1.9+/- 1.7)10^(-2) and (\Delta\Gamma_Bs/\Gamma_Bs)^{(unq.)}=(4.3+/- 2.0+/- 1.9)10^(-2) from the quenched and unquenched simulations respectively

research product

Light hadron spectrum, renormalization constants and light quark masses with two dynamical fermions

The results of a preliminary partially quenched (N_f=2) study of the light hadron spectrum, renormalization constants and light quark masses are presented. Numerical simulations are carried out with the LL-SSOR preconditioned Hybrid Monte Carlo with two degenerate dynamical fermions, using the plaquette gauge action and the Wilson quark action at beta = 5.8. Finite volume effects have been investigated employing two lattice volumes: 16^3 x 48 and 24^3 x 48. Configurations have been generated at four values of the sea quark mass corresponding to M_{PS}/M_V ~ 0.6 - 0.8.

research product

Non-perturbative renormalization in kaon decays

We discuss the application of the MPSTV non-perturbative method \cite{NPM} to the operators relevant to kaon decays. This enables us to reappraise the long-standing question of the $\Delta I=1/2$ rule, which involves power-divergent subtractions that cannot be evaluated in perturbation theory. We also study the mixing with dimension-six operators and discuss its implications to the chiral behaviour of the $B_K$ parameter.

research product

Operator product expansion and quark condensate from Lattice QCD in coordinate space

We present a lattice QCD determination of the chiral quark condensate based on a new method. We extract the quark condensate from the operator product expansion of the quark propagator at short euclidean distances, where it represents the leading contribution in the chiral limit. From this study we obtain MS( 2 GeV) = -( 265 +/- 5 +/- 22MeV)(3), in good agreement with determinations of this quantity based on different approaches. The simulation is performed by using the O( a)- improved Wilson action at beta = 6.45 on a volume 32(3) x 70 in the quenched approximation.

research product

Next-to-leading order renormalization of the $\Delta B=2$ operators in the static theory

The renormalization, at the next-to-leading order in $\alpha_s$, of the $\Delta B=2$ operators at the lowest order in the heavy quark expansion, namely in the static theory, is computed taking into account previously missed contributions. These operators are relevant for the calculation of the $B^0$--$\bar B^0$ mixing on the lattice.

research product

A high statistics lattice calculation of the B-meson binding energy

We present a high statistics lattice calculation of the B--meson binding energy $\overline{\Lambda}$ of the heavy--quark inside the pseudoscalar B--meson. Our numerical results have been obtained from several independent numerical simulations at $\beta=6.0$, $6.2$ and $6.4$, and using, for the meson correlators, the results obtained by the APE group at the same values of $\beta$. Our best estimate, obtained by combining results at different values of $\beta$, is $\overline{\Lambda}=180^{+30}_{-20}$ MeV. For the $\overline{MS}$ running mass, we obtain $\overline{m}_{b}(\overline{m}_{b})=4.15 \pm 0.05 \pm 0.20$ GeV, in reasonable agreement with previous determinations. The systematic error is…

research product

Renormalization group invariant matrix elements of Delta S = 2 and Delta I = 3/2 four fermion operators without quark masses

We introduce a new parameterization of four-fermion operator matrix elements which does not involve quark masses and thus allows a reduction of systematic uncertainties. In order to simplify the matching between lattice and continuum renormalization schemes, we express our results in terms of renormalization group invariant B-parameters which are renormalization-scheme and scale independent. As an application of our proposal, matrix elements of DI=3/2 and SUSY DS =2 operators have been computed. The calculations have been performed using the tree-level improved Clover lattice action at two different values of the strong coupling constant (beta=6/g^2=6.0 and 6.2), in the quenched approximati…

research product

Delta M_K and epsilon_K in SUSY at the Next-to-Leading order

We perform a Next-to-Leading order analysis of Delta S=2 processes beyond the Standard Model. Combining the recently computed NLO anomalous dimensions and the B parameters of the most general Delta S=2 effective Hamiltonian, we give an analytic formula for Delta M_K and epsilon_K in terms of the Wilson coefficients at the high energy scale. This expression can be used for any extension of the Standard Model with new heavy particles. Using this result, we consider gluino-mediated contributions to Delta S=2 transitions in general SUSY models and provide an improved analysis of the constraints on off-diagonal mass terms between the first two generations of down-type squarks. Finally, we improv…

research product