Exploring Heterogeneity with Category and Cluster Analyses for Mixed Data
Precision medicine aims to overcome the traditional one-model-fits-the-whole-population approach that is unable to detect heterogeneous disease patterns and make accurate personalized predictions. Heterogeneity is particularly relevant for patients with complications of type 2 diabetes, including diabetic kidney disease (DKD). We focus on a DKD longitudinal dataset, aiming to find specific subgroups of patients with characteristics that have a close response to the therapeutic treatment. We develop an approach based on some particular concepts of category theory and cluster analysis to explore individualized modelings and achieving insights onto disease evolution. This paper exploits the vi…