0000000001225296

AUTHOR

Michèle Desouter-lecomte

showing 10 related works from this author

Rovibrational controlled-NOT gates using optimized stimulated Raman adiabatic passage techniques and optimal control theory

2009

International audience; Implementation of quantum controlled-NOT (CNOT) gates in realistic molecular systems is studied using stimulated Raman adiabatic passage (STIRAP) techniques optimized in the time domain by genetic algorithms or coupled with optimal control theory. In the first case, with an adiabatic solution (a series of STIRAP processes) as starting point, we optimize in the time domain different parameters of the pulses to obtain a high fidelity in two realistic cases under consideration. A two-qubit CNOT gate constructed from different assignments in rovibrational states is considered in diatomic (NaCs) or polyatomic (SCCl2) molecules. The difficulty of encoding logical states in…

[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph][PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Physics::Atomic and Molecular Clusters[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
researchProduct

Control of molecular dynamics with zero-area fields: Application to molecular orientation and photofragmentation

2014

The constraint of time-integrated zero-area on the laser field is a fundamental, both theoretical and experimental requirement in the control of molecular dynamics. By using techniques of local and optimal control theory, we show how to enforce this constraint on two benchmark control problems, namely molecular orientation and photofragmentation. The origin and the physical implications on the dynamics of this zero-area control field are discussed.

PhysicsQuantum PhysicsField (physics)Dynamics (mechanics)Zero (complex analysis)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyOptimal control01 natural sciencesAtomic and Molecular Physics and OpticsConstraint (information theory)Molecular dynamicsOrientation (geometry)0103 physical sciencesBenchmark (computing)Statistical physicsAtomic physicsQuantum Physics (quant-ph)010306 general physics0210 nano-technologyPhysical Review A
researchProduct

Rovibrational controlled-NOT gates using optimized stimulated Raman adiabatic passage techniques and optimal control theory

2009

Implementation of quantum controlled-NOT (CNOT) gates in realistic molecular systems is studied using stimulated Raman adiabatic passage (STIRAP) techniques optimized in the time domain by genetic algorithms or coupled with optimal control theory. In the first case, with an adiabatic solution (a series of STIRAP processes) as starting point, we optimize in the time domain different parameters of the pulses to obtain a high fidelity in two realistic cases under consideration. A two-qubit CNOT gate constructed from different assignments in rovibrational states is considered in diatomic (NaCs) or polyatomic $({\text{SCCl}}_{2})$ molecules. The difficulty of encoding logical states in pure rota…

Physics010304 chemical physicsField (physics)Stimulated Raman adiabatic passageRotational–vibrational spectroscopyOptimal control01 natural sciencesAtomic and Molecular Physics and OpticsControlled NOT gateQuantum mechanics0103 physical sciencesPhysics::Atomic and Molecular ClustersTime domain010306 general physicsAdiabatic processQuantum computerPhysical Review A
researchProduct

A NOT gate in a cis-trans photoisomerization model

2007

We numerically study the implementation of a NOT gate by laser pulses in a model molecular system presenting two electronic surfaces coupled by non adiabatic interactions. The two states of the bit are the fundamental states of the cis-trans isomers of the molecule. The gate is classical in the sense that it involves a one-qubit flip so that the encoding of the outputs is based on population analysis which does not take the phases into account. This gate can also be viewed as a double photo-switch process with the property that the same electric field controls the two isomerizations. As an example, we consider one-dimensional cuts in a model of the retinal in rhodopsin already proposed in t…

PhysicsQuantum Physicseducation.field_of_study010304 chemical physicsPhotoisomerizationPhotoswitchPopulationFOS: Physical sciencesSpectral densityPulse durationLaser01 natural sciencesAtomic and Molecular Physics and Opticslaw.inventionlawElectric fieldQubit0103 physical sciences[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsQuantum Physics (quant-ph)010306 general physicseducation
researchProduct

External constraints on optimal control strategies in molecular orientation and photofragmentation: Role of zero-area fields

2013

We propose a new formulation of optimal and local control algorithms which enforces the constraint of time-integrated zero-area on the control field. The fulfillment of this requirement, crucial in many physical applications, is mathematically implemented by the introduction of a Lagrange multiplier aiming at penalizing the pulse area. This method allows to design a control field with an area as small as possible, while bringing the dynamical system close to the target state. We test the efficiency of this approach on two control purposes in molecular dynamics, namely, orientation and photodissociation.

Mathematical optimizationQuantum PhysicsField (physics)Computer scienceOrientation (computer vision)Control (management)FOS: Physical sciencesOptimal controlDynamical systemAtomic and Molecular Physics and OpticsConstraint (information theory)symbols.namesakeLagrange multipliersymbolsState (computer science)Quantum Physics (quant-ph)
researchProduct

Laser control in open molecular systems: STIRAP and Optimal Control

2007

We examine the effect of dissipation on the laser control of a process that transforms a state into a superposed state. We consider a two-dimensional double well of a single potential energy surface. In the context of reactivity, the objective of the control is the localization in a given well, for instance the creation of an enantiomeric form whereas for quantum gates, this control corresponds to one of the transformation of the Hadamard gate. The environment is either modelled by coupling few harmonic oscillators (up to five) to the system or by an effective interaction with an Ohmic bath. In the discrete case, dynamics is carried out exactly by using the coupled harmonic adiabatic channe…

010304 chemical physicsChemistryGeneral Chemical EngineeringStimulated Raman adiabatic passageGeneral Physics and AstronomyContext (language use)General ChemistryOptimal control01 natural sciencesQuantum gateQuantum mechanicsQubit0103 physical sciencesHarmonic010306 general physicsAdiabatic processHarmonic oscillatorJournal of Photochemistry and Photobiology A: Chemistry
researchProduct

Laser control in a bifurcating region

2006

We present a complete analysis of the laser control of a model molecular system using both optimal control theory and adiabatic techniques. This molecule has a particular potential energy surface with a bifurcating region connecting three potential wells which allows a variety of processes such as isomerization, tunnelling or implementation of quantum gates on one or two qubits. The parameters of the model have been chosen so as to reproduce the main features of H3CO which is a molecule-benchmark for such dynamics. We show the feasibility of different processes and we investigate their robustness against variations of laser field. We discuss the conditions under which each method of control…

Physics[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Quantum Physics010304 chemical physicsField (physics)FOS: Physical sciencesOptimal control01 natural sciencesPotential energyAtomic and Molecular Physics and OpticsQuantum gate[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Quantum mechanicsQubit0103 physical sciencesPotential energy surface[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]010306 general physicsAdiabatic processQuantum Physics (quant-ph)ComputingMilieux_MISCELLANEOUSQuantum tunnelling
researchProduct

Computational investigation and experimental considerations for the classical implementation of a full adder on SO2 by optical pump-probe schemes

2008

International audience; Following the scheme recently proposed by Remacle and Levine Phys. Rev. A 73, 033820 2006 , we investigate the concrete implementation of a classical full adder on two electronic states X˜ 1A1 and C ˜ 1B2 of the SO2 molecule by optical pump-probe laser pulses using intuitive and counterintuitive stimulated Raman adiabatic passage excitation schemes. The resources needed for providing the inputs and reading out are discussed, as well as the conditions for achieving robustness in both the intuitive and counterintuitive pump-dump sequences. The fidelity of the scheme is analyzed with respect to experimental noise and two kinds of perturbations: The coupling to the neigh…

Coupling[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Adder[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]010304 chemical physicsChemistryStimulated Raman adiabatic passageGeneral Physics and AstronomyRotational–vibrational spectroscopyTopology01 natural sciencesNoise (electronics)Optical pumpingRobustness (computer science)Quantum mechanics0103 physical sciencesPerturbation theory (quantum mechanics)Physical and Theoretical Chemistry010306 general physics
researchProduct

Laser control of photoinduced processes : alignment and reactivity

2007

[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph][ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph][PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
researchProduct

Laser control of photoinduced dynamics : Quantum gates

2006

[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph][PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph][PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
researchProduct