Impact of a cryogenic baffle system on the suppression of radon-induced background in the KATRIN Pre-Spectrometer
The KATRIN experiment will determine the effective electron anti-neutrino mass with a sensitivity of 200 meV/c2 at 90% CL. The energy analysis of tritium β-decay electrons will be performed by a tandem setup of electrostatic retarding spectrometers which have to be operated at very low background levels of <10−2 counts per second. This benchmark rate can be exceeded by background processes resulting from the emanation of single 219,220Rn atoms from the inner spectrometer surface and an array of non-evaporable getter strips used as main vacuum pump. Here we report on the impact of a cryogenic technique to reduce this radon-induced background in electrostatic spectrometers. It is based on ins…