0000000001228656

AUTHOR

Z. Djurcic

showing 22 related works from this author

Measurement of inclusive neutral current pi(0) production on carbon in a few-GeV neutrino beam

2010

The SciBooNE Collaboration reports inclusive neutral current neutral pion production by a muon neutrino beam on a polystyrene target (C8H8). We obtain (7.7 +/- 0.5(stat) +/- 0.5(sys)) X 10(-2) as the ratio of the neutral current neutral pion production to total charged current cross section; the mean energy of neutrinos producing detected neutral pions is 1.1 GeV. The result agrees with the Rein-Sehgal model implemented in our neutrino interaction simulation program with nuclear effects. The spectrum shape of the pi(0) momentum and angle agree with the model. We also measure the ratio of the neutral current coherent pion production to total charged current cross section to be (0.7 +/- 0.4) …

PhysicsNuclear and High Energy PhysicsParticle physicsScience programLibrary scienceNeutrino beamPriority areasSynthetic materialsLoanChristian ministryHigh Energy Physics::ExperimentFermilabNuclear ExperimentPolyvinyls
researchProduct

Search for Charged Current Coherent Pion Production on Carbon in a Few-GeV Neutrino Beam

2008

The SciBooNE Collaboration has performed a search for charged current coherent pion production from muon neutrinos scattering on carbon, \nu_\mu ^{12}C \to \mu^- ^{12}C \pi^+, with two distinct data samples. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged current coherent pion production to the total charged current cross section at 0.67\times 10^{-2} at mean neutrino energy 1.1 GeV and 1.36\times 10^{-2} at mean neutrino energy 2.2 GeV.

PhysicsNuclear and High Energy PhysicsParticle physicsMuonMesonHadronFOS: Physical sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)PionHigh Energy Physics::ExperimentFermilabNeutrinoNuclear ExperimentCharged currentLepton
researchProduct

Volume IV The DUNE far detector single-phase technology

2020

This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.

Technology530 Physicsmedia_common.quotation_subjectNeutrino oscillations liquid Argon TPC DUNE technical design report single phase LArTPCElectronsFREE-ELECTRONS01 natural sciences7. Clean energy09 Engineering030218 nuclear medicine & medical imagingStandard Model03 medical and health sciencesneutrino0302 clinical medicineLIQUID ARGON0103 physical sciencesGrand Unified TheoryHigh Energy PhysicsAerospace engineeringInstrumentationInstruments & InstrumentationMathematical Physicsmedia_commonPhysicsScience & Technology02 Physical Sciences010308 nuclear & particles physicsbusiness.industryDetectorLıquıd ArgonfreeNuclear & Particles PhysicsSymmetry (physics)UniverseLong baseline neutrino experiment CP violationAntimatterNeutrinobusinessEvent (particle physics)
researchProduct

First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

2020

The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…

TechnologyHIGH-ENERGYPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detectorbeam transportNoble liquid detectors (scintillation ionization double-phase)Cms Experıment01 natural sciences7. Clean energy09 EngineeringParticle identificationHigh Energy Physics - Experiment030218 nuclear medicine & medical imagingHigh Energy Physics - Experiment (hep-ex)0302 clinical medicineNoble liquid detectors (scintillationDetectors and Experimental TechniquesInstrumentationInstruments & Instrumentationphysics.ins-dettime resolutionMathematical PhysicsPhysics02 Physical SciencesTime projection chamberLarge Hadron ColliderDetectorInstrumentation and Detectors (physics.ins-det)double-phase)Nuclear & Particles PhysicsLIGHTNeutrinoParticle Physics - ExperimentperformanceNoble liquid detectors(scintillation ionization double-phase)noiseCERN LabLarge detector systems for particle and astroparticle physics Noble liquid detectors (scintillation ionization double-phase) Time projection Chambers (TPC)530 Physicsenergy lossTime projection chambersFOS: Physical sciencesParticle detectorNuclear physics03 medical and health sciencesneutrino: deep underground detector0103 physical sciencesionizationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]signal processingactivity reportScience & Technology010308 nuclear & particles physicshep-exLarge detector systems for particle and astroparticle physicsTime projection Chambers (TPC)530 Physiksensitivitycalibrationtime projection chamber: liquid argonExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicsingle-phase)Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation ionization double-phase); Time projection Chambers (TPC)High Energy Physics::Experimentphoton: detectorparticle identificationcharged particle: irradiationBeam (structure)
researchProduct

Measurement ofK+production cross section by 8 GeV protons using high-energy neutrino interactions in the SciBooNE detector

2011

The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this mea…

PhysicsNuclear and High Energy PhysicsParticle physicsProtonMesonHadronNuclear physicsAntimatterHigh Energy Physics::ExperimentMuon neutrinoFermilabNeutrinoNuclear ExperimentLeptonPhysical Review D
researchProduct

Measurement of neutrino-induced charged-current charged pion production cross sections on mineral oil atEν∼1  GeV

2011

Using a high-statistics, high-purity sample of {nu}{sub {mu}-}induced charged current, charged pion events in mineral oil (CH{sub 2}), MiniBooNE reports a collection of interaction cross sections for this process. This includes measurements of the CC{pi}{sup +} cross section as a function of neutrino energy, as well as flux-averaged single- and double-differential cross sections of the energy and direction of both the final-state muon and pion. In addition, each of the single-differential cross sections are extracted as a function of neutrino energy to decouple the shape of the MiniBooNE energy spectrum from the results. In many cases, these cross sections are the first time such quantities…

MiniBooNENuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsMuonPionMesonHigh Energy Physics::ExperimentNeutrinoEnergy sourceCharged currentLeptonPhysical Review D
researchProduct

Measurement of the neutrino component of an anti-neutrino beam observed by a non-magnetized detector

2011

Two independent methods are employed to measure the neutrino flux of the anti-neutrino-mode beam observed by the MiniBooNE detector. The first method compares data to simulated event rates in a high purity $\numu$ induced charged-current single $\pip$ (CC1$\pip$) sample while the second exploits the difference between the angular distributions of muons created in $\numu$ and $\numub$ charged-current quasi-elastic (CCQE) interactions. The results from both analyses indicate the prediction of the neutrino flux component of the pre-dominately anti-neutrino beam is over-estimated - the CC1$\pip$ analysis indicates the predicted $\numu$ flux should be scaled by $0.76 \pm 0.11$, while the CCQE an…

PhysicsNuclear and High Energy PhysicsParticle physicsMuonMesonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesHigh Energy Physics - ExperimentNuclear physicsMiniBooNEHigh Energy Physics - Experiment (hep-ex)PionAntimatterHigh Energy Physics::ExperimentNeutrinoEnergy (signal processing)Lepton
researchProduct

Measurement ofνμandν¯μinduced neutral current singleπ0production cross sections on mineral oil atEν∼O(1 GeV)

2010

MiniBooNE reports the first absolute cross sections for neutral current single {pi}{sup 0} production on CH{sub 2} induced by neutrino and antineutrino interactions measured from the largest sets of NC {pi}{sup 0} events collected to date. The principal result consists of differential cross sections measured as functions of {pi}{sup 0} momentum and {pi}{sup 0} angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4.76 {+-} 0.05{sub stat} {+-} 0.40{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of = 808 MeV and (1.48 {+-} 0.05{sub stat} {+-} 0.14{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of = 664 MeV for {nu}{sub {mu}} and {bar {nu}…

MiniBooNENuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsMesonHadronProduction (computer science)NeutrinoNucleonEnergy (signal processing)LeptonPhysical Review D
researchProduct

Measurement ofνμ-induced charged-current neutral pion production cross sections on mineral oil atEν∈0.5–2.0  GeV

2011

The authors would like to acknowledge the support of Fermilab, the Department of Energy, and the National Science Foundation in the construction, operation, and data analysis of the Mini Booster Neutrino Experiment.

PhysicsNuclear and High Energy PhysicsParticle physicsMuonMesonPhysics::Instrumentation and DetectorsNuclear physicsPionPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentFermilabNeutrinoEnergy sourceCharged currentLeptonPhysical Review D
researchProduct

Measurement of the Ratio of theνμCharged-Current Single-Pion Production to Quasielastic Scattering with a 0.8 GeV Neutrino Beam on Mineral Oil

2009

Charged current single pion production (CC{pi}{sup +}) and charged current quasi-elastic scattering (CCQE) are the most abundant interaction types for neutrinos at energies around 1 GeV, a region of great interest to oscillation experiments. The cross-sections for these processes, however, are not well understood in this energy range. This dissertation presents a measurement of the ratio of CC{pi}{sup +} to CCQE cross-sections for muon neutrinos on mineral oil (CH{sub 2}) in the MiniBooNE experiment. The measurement is presented here both with and without corrections for hadronic re-interactions in the target nucleus and is given as a function of neutrino energy in the range 0.4 GeV < E{sub…

Nuclear physicsPhysicsMiniBooNEParticle physicsMuonPionHadronGeneral Physics and AstronomyHigh Energy Physics::ExperimentNeutrinoEnergy sourceCharged currentLeptonPhysical Review Letters
researchProduct

Search for Core-Collapse Supernovae using the MiniBooNE Neutrino Detector

2009

We present a search for core-collapse supernovae in the Milky Way galaxy, using the MiniBooNE neutrino detector. No evidence is found for core-collapse supernovae occurring in our Galaxy in the period from December 14, 2004 to July 31, 2008, corresponding to 98% live time for collection. We set a limit on the core-collapse supernova rate out to a distance of 13.4 kpc to be less than 0.69 supernovae per year at 90% C. L.

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNuclear and High Energy PhysicsResearch Groups and Centres\Physics\Low Temperature PhysicsFaculty of Science\PhysicsMilky WayAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomyAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGalaxyMiniBooNESupernovaNeutrino detectorGravitational collapseHigh Energy Physics::ExperimentVariable starNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

Search for Electron Antineutrino Appearance at theΔm2∼1  eV2Scale

2009

The MiniBooNE Collaboration reports initial results from a search for nu{sub m}u->nu{sub e} oscillations. A signal-blind analysis was performed using a data sample corresponding to 3.39x10{sup 20} protons on target. The data are consistent with background prediction across the full range of neutrino energy reconstructed assuming quasielastic scattering, 200<E{sub n}u{sup QE}<3000 MeV: 144 electronlike events have been observed in this energy range, compared to an expectation of 139.2+-17.6 events. No significant excess of events has been observed, both at low energy, 200-475 MeV, and at high energy, 475-1250 MeV. The data are inconclusive with respect to antineutrino oscillations suggested …

Nuclear physicsPhysicsNuclear reactionMiniBooNEParticle physicsLiquid Scintillator Neutrino DetectorQuasielastic scatteringGeneral Physics and AstronomyNeutrinoNuclear ExperimentNeutrino oscillationElectron neutrinoLeptonPhysical Review Letters
researchProduct

Measurement of the neutrino neutral-current elastic differential cross section on mineral oil atEν∼1  GeV

2010

We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH{sub 2}) as a function of four-momentum transferred squared, Q{sup 2}. It is obtained by measuring the kinematics of recoiling nucleons with kinetic energy greater than 50 MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass M{sub A} that provides a best fit for M{sub A}=1.39{+-}0.11 GeV. Using the data from the charged-current neutrino interaction sample, a ratio of neutral-current to charged-current quasielastic cross sections as a function of Q{sup 2} …

PhysicsElastic scatteringNuclear and High Energy PhysicsParticle physicsNuclear TheoryForm factor (quantum field theory)Nuclear physicsBaryonMiniBooNENeutrinoNuclear ExperimentNucleonEnergy (signal processing)LeptonPhysical Review D
researchProduct

Event Excess in the MiniBooNE Search forν¯μ→ν¯eOscillations

2010

The MiniBooNE experiment at Fermilab reports results from a search for {nu}{sub {mu}{yields}{nu}e} oscillations, using a data sample corresponding to 5.66x10{sup 20} protons on target. An excess of 20.9{+-}14.0 events is observed in the energy range 475<E{sub {nu}}{sup QE}<1250 MeV, which, when constrained by the observed {nu}{sub {mu}} events, has a probability for consistency with the background-only hypothesis of 0.5%. On the other hand, fitting for {nu}{sub {mu}{yields}{nu}e} oscillations, the best-fit point has a {chi}{sup 2} probability of 8.7%. The data are consistent with {nu}{sub {mu}{yields}{nu}e} oscillations in the 0.1 to 1.0 eV{sup 2} {Delta}m{sup 2} range and with the evidence…

Nuclear physicsMiniBooNEPhysicsParticle physicsAntiparticleAntimatterGeneral Physics and AstronomyNeutrinoNeutrino oscillationParticle identificationEnergy (signal processing)LeptonPhysical Review Letters
researchProduct

Improved measurement of neutral current coherent pi(0) production on carbon in a few-GeV neutrino beam

2010

The SciBooNE Collaboration reports a measurement of neutral current coherent pi(0) production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive pi(0) production has been improved by detecting recoil protons from resonant pi(0) production. We measure the ratio of the neutral current coherent pi(0) production to total charged current cross sections to be 1.16 +/- 0.24) x 10(-2). The ratio of charged current coherent pi(+) to neutral current coherent pi(0) production is calculated to be 0.14(-0.28)(+0.30), using our published charged current coherent pion measurement.

PhysicsNuclear and High Energy PhysicsMeson productionLoanScience programLibrary scienceHigh Energy Physics::ExperimentChristian ministryFermilabNeutrino beamPriority areasNeutrino scattering
researchProduct

Search for Muon Neutrino and Antineutrino Disappearance in MiniBooNE

2009

The MiniBooNE Collaboration reports a search for nu(mu) and nu(mu) disappearance in the Delta m(2) region of 0.5-40 eV(2). These measurements are important for constraining models with extra types of neutrinos, extra dimensions, and CPT violation. Fits to the shape of the nu(mu) and nu(mu) energy spectra reveal no evidence for disappearance at the 90% confidence level (C.L.) in either mode. The test of nu(mu) disappearance probes a region below Delta m(2)=40 eV(2) never explored before.

PhysicsAntiparticleParticle physicsGeneral Physics and AstronomyFOS: Physical sciencesElementary particleHigh Energy Physics - ExperimentMiniBooNEMassless particleNuclear physicsHigh Energy Physics - Experiment (hep-ex)AntimatterNeutrinoEnergy (signal processing)Lepton
researchProduct

Neutrino flux prediction at MiniBooNE

2009

The booster neutrino experiment (MiniBooNE) searches for nu(mu)->nu(e) oscillations using the O(1 GeV) neutrino beam produced by the booster synchrotron at the Fermi National Accelerator Laboratory). The booster delivers protons with 8 GeV kinetic energy (8.89 GeV/c momentum) to a beryllium target, producing neutrinos from the decay of secondary particles in the beam line. We describe the Monte Carlo simulation methods used to estimate the flux of neutrinos from the beam line incident on the MiniBooNE detector for both polarities of the focusing horn. The simulation uses the Geant4 framework for propagating particles, accounting for electromagnetic processes and hadronic interactions in the…

PhysicsResearch Groups and Centres\Physics\Low Temperature PhysicsNuclear and High Energy PhysicsParticle physicsMesonFaculty of Science\PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesHigh Energy Physics - ExperimentMassless particleMiniBooNENuclear physicsHigh Energy Physics - Experiment (hep-ex)PionPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentFermilabNeutrinoNuclear ExperimentNeutrino oscillationLeptonPhysical Review D
researchProduct

Unexplained Excess of Electronlike Events from a 1-GeV Neutrino Beam

2009

The MiniBooNE Collaboration observes unexplained electronlike events in the reconstructed neutrino energy range from 200 to 475 MeV. With 6.46 x 10(20) protons on target, 544 electronlike events are observed in this energy range, compared to an expectation of 415.2 +/- 43.4 events, corresponding to an excess of 128.8 +/- 20.4 +/- 38.3 events. The shape of the excess in several kinematic variables is consistent with being due to either nu(e) and (nu) over bar (e) charged-current scattering or nu(mu) neutral-current scattering with a photon in the final state. No significant excess of events is observed in the reconstructed neutrino energy range from 475 to 1250 MeV, where 408 events are obse…

PhysicsParticle physicsScatteringHadronAstrophysics (astro-ph)General Physics and AstronomyFOS: Physical sciencesAstrophysicsHigh Energy Physics - ExperimentNuclear physicsMiniBooNEHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)NeutrinoNucleonNeutrino oscillationEnergy (signal processing)Lepton
researchProduct

A White Paper on keV sterile neutrino Dark Matter

2017

We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrin…

AstrofísicaSterile neutrinocosmological modelCold dark mattercosmological neutrinosPhysics beyond the Standard Model[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Dark matter theory01 natural sciencesCosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)White paperHigh Energy Physics - Phenomenology (hep-ph)X-RAY-EMISSIONMETALLIC MAGNETIC CALORIMETERSQUANTUM-FIELD THEORY[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: dark matterCosmological neutrinos; Dark matter experiments; Dark matter theory; Particle physics - cosmology connection010303 astronomy & astrophysicsPhysicsdark matter theorynew physicsDOUBLE-BETA-DECAYhep-phneutrino: sterileCosmological neutrinos; Dark matter experiments; Dark matter theory; Particle physics - cosmology connection; Astronomy and AstrophysicsNuclear & Particles PhysicsHigh Energy Physics - Phenomenologyneutrino: detectorDark matter experimentsparticle physics - cosmology connectionastro-ph.COMILKY-WAY SATELLITESCosmological neutrinos3.5 KEV LINENeutrinoParticle Physics - ExperimentAstrophysics - Cosmology and Nongalactic AstrophysicsParticle physicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)astro-ph.GADark matterLY-ALPHA FORESTreviewFOS: Physical sciencesContext (language use)neutrino: productionX-raySettore FIS/05 - Astronomia e Astrofisica[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]RIGHT-HANDED NEUTRINOS0103 physical sciencesAstronomical And Space Sciencesnumerical calculationsDark matter experimentXMM-NEWTON OBSERVATIONSneutrino: modelParticle Physics - PhenomenologyDWARF SPHEROIDAL GALAXYCosmologia010308 nuclear & particles physicshep-exdark matter experimentsHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsAtomic Molecular Nuclear Particle And Plasma PhysicsCosmological neutrinoAstrophysics - Astrophysics of Galaxies13. Climate actionAstrophysics of Galaxies (astro-ph.GA)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Particle physics - cosmology connection[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentneutrino: oscillation[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Journal of Cosmology and Astroparticle Physics
researchProduct

Volume III. DUNE far detector technical coordination

2020

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…

Technology530 PhysicsPhysics::Instrumentation and Detectorsmedia_common.quotation_subjectContext (language use)01 natural sciences09 Engineering030218 nuclear medicine & medical imagingneutrino03 medical and health sciences0302 clinical medicine0103 physical sciencesGrand Unified TheoryDeep Underground Neutrino ExperimentHigh Energy PhysicsInstruments & InstrumentationNeutrino oscillations liquid Argon TPC technical design report technical coordinationInstrumentationMathematical Physicsmedia_commonScience & Technology02 Physical Sciences010308 nuclear & particles physicsDetectorVolume (computing)530 PhysikNuclear & Particles PhysicsUniverseSystems engineeringHigh Energy Physics::ExperimentState (computer science)NeutrinoLong baseline neutrino experiment CP violationJournal of Instrumentation
researchProduct

Measurement of θ13 in Double Chooz using neutron captures on hydrogen with novel background rejection techniques

2016

The Double Chooz collaboration presents a measurement of the neutrino mixing angle θ[subscript 13] using reactor [bar over ν[subscript e]] observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 462.72 live days data, approximately twice as much data as in the previous such analysis, collected with a detector positioned at an average distance of 1050 m from two reactor cores. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties. Accidental coincidences, the dominant background in this analysis, are suppressed by more than an order of magnitude with respec…

data analysis methodNuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsNeutrino Detectors and TelescopeGadoliniumnuclear reactor [antineutrino/e]energy spectrumchemistry.chemical_elementFluxmixing angle: measured [neutrino]CHOOZ7. Clean energy01 natural sciencesHigh Energy Physics - Experimentflux [antineutrino]Flavor physicscapture [n]0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Electroweak interactionddc:530Neutron010306 general physicsPhysicsNeutrino Detectors and Telescopesbackground010308 nuclear & particles physicsoscillation [neutrino]suppressionDouble ChoozNeutron captureOscillationchemistryhydrogenInverse beta decayFlavor physicspectralHigh Energy Physics::ExperimentgadoliniumNeutrinoOrder of magnitudeexperimental results
researchProduct

Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

2010

We report a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6%-15% for the energy dependent and 3% for the energy integrated analyses. We also extract charged current inclusive interaction cross sections from the observed rates, with a precision of 10%-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the …

PhysicsNuclear and High Energy PhysicsParticle physicsMuonFOS: Physical sciencesElementary particleFermionHigh Energy Physics - ExperimentMassless particleNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics::ExperimentFermilabNeutrinoCharged currentLeptonPhysical Review D
researchProduct