0000000001229555
AUTHOR
Margarita Bulatova
Controlling the crystal growth of potassium iodide with a 1,1'-bis(pyridin-4-ylmethyl)-2,2'-biimidazole ligand (L) – formation of a linear [K4I4L4]n polymer with cubic [K4I4] core units
The crystal growth of potassium iodide was controlled by using the neutral organic 1,1′-bis(pyridin-4-ylmethyl)-2,2′-biimidazole (L) ligand as a modifier. The selected modifier allows the preservation of original cubic [K4I4] units and their arrangement into a linear ligand-supported 1D chain. The supported [K4I4] cubes are only slightly distorted compared to the cubes found in pure KI salt. The N–K binding of the ligand to the KI salt, as well as weak I⋯H, N⋯H, and N⋯I interactions, stabilizes the structure to create a unique 1D polymer of neutral potassium iodide ionic salt inside the [K4I4L4]n complex.
Synthesis and investigation of coordinative properties of biimidazole-derived ligands
For this thesis a study of the coordination properties of biimidazole-based compounds was performed. The thesis is divided into two parts: literature part, where the chemistry and application of biimidazole and its derivatives are discussed, and experimental part, where the synthesis and coordination properties of biimidazole-based ligands are studied and discussed. The literature part contains a discussion of coordinative properties of biimidazole-derived ligands and a discussion of different types of weak interactions. Definition, nature and examples of hydrogen and different types of π-bonding were considered in detail. Due to chemical properties of biimidazole-derived compounds they hav…
Studies of Nature of Uncommon Bifurcated I–I···(I–M) Metal-Involving Noncovalent Interaction in Palladium(II) and Platinum(II) Isocyanide Cocrystals
Two isostructural trans-[MI2(CNXyl)2]·I2 (M = Pd or Pt; CNXyl = 2,6-dimethylphenyl isocyanide) metallopolymeric cocrystals containing uncommon bifurcated iodine···(metal–iodide) contact were obtained. In addition to classical halogen bonding, single-crystal X-ray diffraction analysis revealed a rare type of metal-involved stabilizing contact in both cocrystals. The nature of the noncovalent contact was studied computationally (via DFT, electrostatic surface potential, electron localization function, quantum theory of atoms in molecules, and noncovalent interactions plot methods). Studies confirmed that the I···I halogen bond is the strongest noncovalent interaction in the systems, followed …
Classics Meet Classics: Theoretical and Experimental Studies of Halogen Bonding in Adducts of Platinum(II) 1,5-Cyclooctadiene Halide Complexes with Diiodine, Iodoform, and 1,4-Diiodotetrafluorobenzene
Complexes of PtX2COD (X = Cl, Br, I; COD = 1,5-cyclooctadiene) were cocrystallized with classical halogen-bond donors (CHI3, I2, and 1,4-diiodotetrafluorobenzene (FIB)), resulting in noncovalently ...
Influence of Substituents in the Aromatic Ring on the Strength of Halogen Bonding in Iodobenzene Derivatives
Halogen bonding properties of 3,4,5-triiodobenzoic acid (1, 2), 1,2,3-triiodobenzene (3), pentaiodobenzoic acid ethanol solvate (4), hexaiodobenzene (5a, 5b, 5c), 2,4-diiodoaniline (6), 4-iodoaniline (7), 2-iodoaniline (8), 2-iodophenol (9), 4-iodophenol (10), 3-iodophenol (11) and 2,4,6-triiodophenol (12) has been studied. The results suggested that substituents other than halogen in aromatic ring affect XB properties of iodine substituents in ortho-, meta- and para-positions. The effect depends on the electron-withdrawing/electron-donating properties of the substituent. Thus, electron-withdrawing substituents with negative mesomeric effect favor m-iodines to act as XB donors and o- and p-…
Influence of substituents in aromatic ring on the strength of halogen bonding in iodobenzene derivatives
Halogen bonding properties of 3,4,5-triiodobenzoic acid (1, 2), 1,2,3-triiodobenzene (3), pentaiodobenzoic acid ethanol solvate (4), hexaiodobenzene (5a, 5b, 5c), 2,4-diiodoaniline (6), 4-iodoaniline (7), 2-iodoaniline (8), 2-iodophenol (9), 4-iodophenol (10), 3-iodophenol (11) and 2,4,6-triiodophenol (12) has been studied. The results suggested that substituents other than halogen in aromatic ring affect XB properties of iodine substituents in ortho-, meta- and para-positions. The effect depends on the electron-withdrawing/electron-donating properties of the substituent. Thus, electron-withdrawing substituents with negative mesomeric effect favor m-iodines to act as XB donors and o- and p-…
CCDC 2054859: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591
CCDC 2011890: Experimental Crystal Structure Determination
Related Article: Maria V. Chernysheva, Margarita Bulatova, Xin Ding, Matti Haukka|2020|Cryst.Growth Des.|20|7197|doi:10.1021/acs.cgd.0c00866
CCDC 1588805: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Rajendhraprasad Tatikonda, Pipsa Hirva, Evgeny Bulatov, Elina Sievänen, Matti Haukka|2018|CrystEngComm|20|3631|doi:10.1039/C8CE00483H
CCDC 2031113: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314
CCDC 2031119: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314
CCDC 2054860: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591
CCDC 2031118: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314
CCDC 2031114: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314
CCDC 2054861: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591
CCDC 2031117: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314
CCDC 2011891: Experimental Crystal Structure Determination
Related Article: Maria V. Chernysheva, Margarita Bulatova, Xin Ding, Matti Haukka|2020|Cryst.Growth Des.|20|7197|doi:10.1021/acs.cgd.0c00866
CCDC 2031115: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314
CCDC 2031116: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314
CCDC 2054862: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591