0000000001229995
AUTHOR
G. Guarino
Buckling analysis of multilayered structures using high-order theories and the implicit-mesh discontinuous Galerkin method
This work presents a novel formulation for the linear buckling analysis of multilayered shells. The formulation employs high-order Equivalent-Single-Layer (ESL) shell theories based on the through-the-thickness expansion of the covariant components of the displacement field, whilst the corresponding buckling problem is derived using the Euler’s method. The novelty of the formulation regards the solution of the governing equations, which is obtained via implicit-mesh discontinuous Galerkin (DG) schemes. The DG method is a high-order accurate numerical technique based on a discontinuous representation of the solution among the mesh elements and on the use of suitably defined boundary integral…
Buckling and post-buckling of variable stiffness plates with cutouts by a single-domain Ritz method
Structural components with variable stiffness can provide better performances with respect to classical ones and offer an enlarged design space for their optimization. They are attractive candidates for advanced lightweight structural applications whose functionalities often impose the presence of cutouts that requires accurate and effective analysis for their design. In the present work, a single-domain Ritz formulation is proposed, implemented and validated for the analysis of buckling and post-buckling behaviour of variable stiffness plates with cutouts. The plate model is based on the first-order shear deformation theory with nonlinear von Karman strain–displacement relationships. The p…
TRANSIENT AND FREE-VIBRATION ANALYSIS OF LAMINATED SHELLS THROUGH THE DISCONTINUOUS GALERKIN METHOD
This paper presents a novel formulation for linear transient and free-vibration analysis of laminated shell structures based on Interior Penalty discontinuous Galerkin (DG) methods and variable-order through-the-thickness kinematics, whose combined use allows solving the shell problem with high-order accuracy throughout both the shell thickness and the shell modelling domain. The shell geometry is described via a generic system of curvilinear coordinates using either an analytical or a NURBS-based parametrization of the shell mid surface; the formulation also allows for the presence of cut-outs, which are implicitly represented by means of a level set function. After deriving the governing …