0000000001232002

AUTHOR

Manuel Baumgartner

showing 11 related works from this author

Improving checkpointing intervals by considering individual job failure probabilities

2021

Checkpointing is a popular resilience method in HPC and its efficiency highly depends on the choice of the checkpoint interval. Standard analytical approaches optimize intervals for big, long-running jobs that fail with high probability, while they are unable to minimize checkpointing overheads for jobs with a low or medium probability of failing. Nevertheless, our analysis of batch traces of four HPC systems shows that these jobs are extremely common.We therefore propose an iterative checkpointing algorithm to compute efficient intervals for jobs with a medium risk of failure. The method also supports big and long-running jobs by converging to the results of various traditional methods for…

High probabilitySystems simulationComputer scienceBatch processingInterval (mathematics)Medium RiskResilience (network)Reliability engineering2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
researchProduct

Reappraising the appropriate calculation of a common meteorological quantity: Potential Temperature

2020

Abstract. The potential temperature is a widely used quantity in atmospheric science since it is conserved for air's adiabatic changes of state. Its definition involves the specific heat capacity of dry air, which is traditionally assumed as constant. However, the literature provides different values of this allegedly constant parameter, which are reviewed and discussed in this study. Furthermore, we derive the potential temperature for a temperature-dependent parameterization of the specific heat capacity of dry air, thus providing a new reference potential temperature with a more rigorous basis. This new reference shows different values and vertical gradients in the upper troposphere and …

Physics::Atmospheric and Oceanic Physics
researchProduct

Terahertz electrical writing speed in an antiferromagnetic memory

2018

The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet. A current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the 12-order-of-magnitude range of writing speeds from hertz to terahertz. Our work opens the…

Terahertz radiationPhysics::Optics02 engineering and technologyHardware_PERFORMANCEANDRELIABILITY01 natural sciences530Computer Science::Hardware ArchitectureHertz0103 physical sciencesHardware_INTEGRATEDCIRCUITSAntiferromagnetismAtomic lattice010306 general physicsResearch ArticlesSpin-½PhysicsMultidisciplinarybusiness.industrySciAdv r-articles021001 nanoscience & nanotechnologyelectrical writingFerromagnetismApplied Sciences and Engineeringwriting speedComputer ScienceOptoelectronicsCondensed Matter::Strongly Correlated Electronsantiferromagnetic memory0210 nano-technologybusinessRealization (systems)Research ArticleScience Advances
researchProduct

In-Situ observation of New Particle Formation in the upper troposphere/lower stratosphere of the Asian Monsoon Anticyclone

2020

Abstract. During the monsoon season of the year 2017 the airborne StratoClim mission took place in Kathmandu, Nepal with eight mission flights of the M-55 Geophysica in the upper troposphere/lower stratosphere (UT/LS) of the Asian Monsoon Anticyclone (AMA) over northern India, Nepal and Bangladesh. More than hundred events of New Particle Formation (NPF) were observed. In total, more than two hours of flight time were spent under NPF conditions as indicated by the abundant presence of ultrafine aerosols, i.e. with particle diameters dp smaller than 15 nm, which were in-situ detected by means of condensation nuclei counting techniques. Mixing ratios of ultrafine particles (nuf) of up to ~ 50…

[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereTroposphere13. Climate actionAnticycloneClimatologyddc:550East Asian MonsoonEnvironmental scienceParticle (ecology)MonsoonStratosphere
researchProduct

New particle formation inside ice clouds: In-situ observations in the tropical tropopause layer of the 2017 Asian Monsoon Anticyclone

2021

Abstract. From 27 July to 10 August 2017 the airborne StratoClim mission took place in Kathmandu, Nepal where eight mission flights were conducted with the M-55 Geophysica up to altitudes of 20 km. New Particle Formation (NPF) was identified by the abundant presence of ultrafine aerosols, with particle diameters dp smaller than 15 nm, which were in-situ detected by means of condensation nuclei counting techniques. NPF fields in clear-skies as well as in the presence of cloud ice particles (dp > 3 µm) were encountered at upper troposphere/lowermost stratosphere (UT/LS) levels and within the Asian Monsoon Anticyclone (AMA). NPF-generated ultrafine particles in elevated concentrations (Nuf)…

education.field_of_studyIce cloud010504 meteorology & atmospheric sciencesPopulation010501 environmental sciencesAtmospheric sciences01 natural sciencesTroposphere13. Climate actionAnticycloneUltrafine particleEnvironmental scienceCloud condensation nucleiEast Asian MonsooneducationStratosphere0105 earth and related environmental sciences
researchProduct

Algorithmic differentiation for cloud schemes (IFS Cy43r3) using CoDiPack (v1.8.1)

2019

Abstract. Numerical models in atmospheric sciences not only need to approximate the flow equations on a suitable computational grid, they also need to include subgrid effects of many non-resolved physical processes. Among others, the formation and evolution of cloud particles is an example of such subgrid processes. Moreover, to date there is no universal mathematical description of a cloud, hence many cloud schemes have been proposed and these schemes typically contain several uncertain parameters. In this study, we propose the use of algorithmic differentiation (AD) as a method to identify parameters within the cloud scheme, to which the output of the cloud scheme is most sensitive. We il…

Scheme (programming language)Mathematical optimization010504 meteorology & atmospheric sciencesComputer scienceAutomatic differentiationbusiness.industrylcsh:QE1-996.5Cloud computing010103 numerical & computational mathematicsGeneral MedicineLimitingNumerical modelsGrid01 natural scienceslcsh:GeologyFlow (mathematics)0101 mathematicsUncertainty quantificationbusinesscomputer0105 earth and related environmental sciencescomputer.programming_languageGeoscientific Model Development
researchProduct

On numerical broadening of particle size spectra: a condensational growth study using PyMPDATA 1.0

2021

Abstract. The work discusses the diffusional growth in particulate systems such as atmospheric clouds. It focuses on the Eulerian modeling approach in which the evolution of the probability density function describing the particle size spectrum is carried out using a fixed-bin discretization. The numerical diffusion problem inherent to the employment of the fixed-bin discretization is scrutinized. The work focuses on the applications of MPDATA family of numerical schemes. Several MPDATA variants are explored including: infinite-gauge, non-oscillatory, third-order-terms and recursive antidiffusive correction (double pass donor cell, DPDC) options. Methodology for handling coordinate transfor…

010504 meteorology & atmospheric sciencesDiscretizationComputer scienceEulerian pathProbability density functionNumerical diffusion01 natural sciences010305 fluids & plasmassymbols.namesakeTemporal resolution0103 physical sciencesConvergence (routing)symbolsApplied mathematicsSpurious relationship0105 earth and related environmental sciencesDoppler broadening
researchProduct

Impact of formulations of the homogeneous nucleation rate on ice nucleation events in cirrus

2023

Abstract. Homogeneous freezing of solution droplets is an important pathway of ice formation in the tropopause region. The nucleation rate can be parameterized as a function of water activity, based on empirical fits and some assumptions on the underlying properties of super-cooled water, although a general theory is missing. It is not clear how nucleation events are influenced by the exact formulation of the nucleation rate or even their inherent uncertainty. In this study we investigate the formulation of the nucleation rate of homogeneous freezing of solution droplets (1) to link the formulation to the nucleation rate of pure water droplets, (2) to derive a robust and simple formulation …

Atmospheric Science530 Physics530 Physik
researchProduct

Algorithmic Differentiation for Cloud Schemes

2019

<p>Numerical models in atmospheric sciences do not only need to approximate the flow equations on a suitable computational grid, they also need to include subgrid effects of many non-resolved physical processes. Among others, the formation and evolution of cloud particles is an example of such subgrid processes. Moreover, to date there is no universal mathematical description of a cloud, hence many cloud schemes were proposed and these schemes typically contain several uncertain parameters. In this study, we propose the use of algorithmic differentiation (AD) as a method to identify parameters within the cloud scheme, to which the output of the cloud scheme is most sensitive.…

Scheme (programming language)Mathematical optimizationAutomatic differentiationbusiness.industryComputer scienceCloud computingLimitingNumerical modelsGridFlow (mathematics)Uncertainty quantificationbusinesscomputercomputer.programming_language
researchProduct

On numerical broadening of particle-size spectra: a condensational growth study using PyMPDATA 1.0

2022

This work discusses the numerical aspects of representing the condensational growth of particles in models of aerosol systems such as atmospheric clouds. It focuses on the Eulerian modelling approach, in which fixed-bin discretisation is used for the probability density function describing the particle-size spectrum. Numerical diffusion is inherent to the employment of the fixed-bin discretisation for solving the arising transport problem (advection equation describing size spectrum evolution). The focus of this work is on a technique for reducing the numerical diffusion in solutions based on the upwind scheme: the multidimensional positive definite advection transport algorithm (MPDATA). S…

NumerikKondensationswachstumGrößenverteilung
researchProduct

On numerical broadening of particle size spectra: a condensational growth study using PyMPDATA

2020

This work discusses the numerical aspects of representing the diffusional (condensational) growth in particulate systems such as atmospheric clouds. It focuses on the Eulerian modeling approach, in which the evolution of the particle size spectrum is carried out using a fixed-bin discretization associated with inherent numerical diffusion. Focus is on the applications of MPDATA numerical schemes (variants explored include: infinite-gauge, non-oscillatory, third-order-terms and recursive antidiffusive correction). Methodology for handling coordinate transformations associated with both particle size distribution variable choice and numerical grid layout are expounded. Analysis of the perform…

Physics - Atmospheric and Oceanic PhysicsAtmospheric and Oceanic Physics (physics.ao-ph)Fluid Dynamics (physics.flu-dyn)FOS: Physical sciencesPhysics - Fluid DynamicsComputational Physics (physics.comp-ph)Physics - Computational Physics
researchProduct