0000000001234111
AUTHOR
L.p. Gaffney
Single-neutron orbits near Ni-78: Spectroscopy of the N=49 isotope Zn-79
5 pags., 6 figs.
Shape coexistence in neutron-deficient Hg isotopes studied via lifetime measurements in 184,186Hg and two-state mixing calculations
The neutron-deficient mercury isotopes, $^{184,186}$Hg, were studied with the Recoil Distance Doppler Shift (RDDS) method using the Gammasphere array and the K\"oln Plunger device. The Differential Decay Curve Method (DDCM) was employed to determine the lifetimes of the yrast states in $^{184,186}$Hg. An improvement on previously measured values of yrast states up to $8^{+}$ is presented as well as first values for the $9_{3}$ state in $^{184}$Hg and $10^{+}$ state in $^{186}$Hg. $B(E2)$ values are calculated and compared to a two-state mixing model which utilizes the variable moment of inertia (VMI) model, allowing for extraction of spin-dependent mixing strengths and amplitudes.
First Exploration of Neutron Shell Structure Below Lead and Beyond $\boldsymbol{N=126}$
The nuclei below lead but with more than 126 neutrons are crucial to an understanding of the astrophysical $r$-process in producing nuclei heavier than $A\sim190$. Despite their importance, the structure and properties of these nuclei remain experimentally untested as they are difficult to produce in nuclear reactions with stable beams. In a first exploration of the shell structure of this region, neutron excitations in $^{207}$Hg have been probed using the neutron-adding ($d$,$p$) reaction in inverse kinematics. The radioactive beam of $^{206}$Hg was delivered to the new ISOLDE Solenoidal Spectrometer at an energy above the Coulomb barrier. The spectroscopy of $^{207}$Hg marks a first step…
Quadrupole and octupole collectivity in the semi-magic nucleus 80,206Hg126
The first low-energy Coulomb-excitation measurement of the radioactive, semi-magic, two proton-hole nucleus 206Hg, was performed at CERN’s recently-commissioned HIE-ISOLDE facility. Two γ rays depopulating low-lying states in 206Hg were observed. From the data, a reduced transition strength B(E2; 2+ 1 → 0+ 1 ) = 4.4(6) W.u was determined, the first such value for an N = 126 nucleus south of 208Pb, which is found to be slightly lower than that predicted by shell-model calculations. In addition, a collective octupole state was identified at an excitation energy of 2705 keV, for which a reduced B(E3) transition probability of 30+10−13 W.u was extracted. These results are crucial for understand…
Coulomb excitation of 222Rn
International audience; The nature of quadrupole and octupole collectivity in $^{222}$Rn was investigated by determining the electric-quadrupole (E2) and octupole (E3) matrix elements using subbarrier, multistep Coulomb excitation. The radioactive $^{222}$Rn beam, accelerated to 4.23 MeV/u, was provided by the HIE-ISOLDE facility at CERN. Data were collected in the Miniball $\gamma$ -ray spectrometer following the bombardment of two targets, $^{120}$Sn and $^{60}$Ni. Transition E2 matrix elements within the ground-state and octupole bands were measured up to 10 ¯h and the results were consistent with a constant intrinsic electric-quadrupole moment, 518(11) $e$ fm$^2$ . The values of the int…