0000000001234505

AUTHOR

Ezékiel Baudoin

showing 6 related works from this author

Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR.

2004

Abstract Denitrification, the reduction of nitrate to nitrous oxide or dinitrogen, is the major biological mechanism by which fixed nitrogen returns to the atmosphere from soil and water. Microorganisms capable of denitrification are widely distributed in the environment but little is known about their abundance since quantification is performed using fastidious and time-consuming MPN-based approaches. We used real-time PCR to quantify the denitrifying nitrite reductase gene (nirK), a key enzyme of the denitrifying pathway catalyzing the reduction of soluble nitrogen oxide to gaseous form. The real-time PCR assay was linear over 7 orders of magnitude and sensitive down to 102 copies by assa…

Microbiology (medical)Fastidious organismDNA BacterialDenitrificationNitrite ReductasesMicroorganismMolecular Sequence DataRhodobacter sphaeroidesBiologyMicrobiologyAchromobacter cycloclastesPolymerase Chain ReactionSensitivity and SpecificityMicrobiologychemistry.chemical_compoundDenitrifying bacteriaNitrateGram-Negative BacteriaEscherichia coliBradyrhizobiumMolecular BiologyPhylogenySoil MicrobiologyAlcaligenes faecalisBase SequenceSequence Analysis DNANitrite reductasebiology.organism_classificationchemistryBiochemistryNitrogen fixationBacteriaSinorhizobium melilotiJournal of microbiological methods
researchProduct

Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-gr…

2009

International audience; The phytostimulatory PGPR Azospirillum lipoferum CRT1 was inoculated to maize seeds and the impact on the genetic structure of the rhizobacterial community in the field was determined during maize growth by Automated Ribosomal Intergenic Spacer Analysis (ARISA) of rhizosphere DNA extracts. ARISA fingerprints could differ from one plant to the next as well as from one sampling to the next. Inoculation with strain CRT1 enhanced plant-to-plant variability of the ARISA fingerprints and caused a statistically significant shift in the composition of the indigenous rhizobacterial community at the first two samplings. This is the first study on the ecological impact of Azosp…

Ribosomal Intergenic Spacer analysisSoil ScienceBiology[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil studyRhizobacteriaMicrobiologyAzospirillum Rhizosphere ARISA Fingerprint Bacterial community Impact03 medical and health sciencesMicrobial ecologyBotanyPoaceae[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMicrobial inoculant[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biology2. Zero hunger0303 health sciencesRhizosphere[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyInoculationfood and beverages04 agricultural and veterinary sciencesHorticultureAzospirillum lipoferum040103 agronomy & agriculture0401 agriculture forestry and fisheries[SDE.BE]Environmental Sciences/Biodiversity and Ecology
researchProduct

Direct seeding mulch-based cropping increases both the activity and the abundance of denitrifier communities in a tropical soil

2009

International audience; This study evaluated the impact of direct seeding mulch-based cropping (DMC), as an alternative to conventional tilling (CT), on a functional community involved in N cycling and emission of greenhouse gas nitrous oxide (N2O). The study was carried out for annual soybean/rice crop rotation in the Highlands of Madagascar. The differences between the two soil management strategies (direct seeding with mulched crop residues versus tillage without incorporation of crop residues) were studied along a fertilization gradient (no fertilizer, organic fertilizer, organic plus mineral fertilizers). The activity and size of the denitrifier community were determined by denitrifica…

Crop residueDenitrificationNOSZ GENENITROUS OXIDEDIRECT SEEDING[SDE.MCG]Environmental Sciences/Global ChangesSoil ScienceTRAVAIL DU SOLFAUNE DU SOL010501 environmental sciences01 natural sciencesMicrobiologyABONDANCESoil managementAZOTE[SDV.EE.ECO]Life Sciences [q-bio]/Ecology environment/EcosystemsEVOLUTION DES SOLS SOUS CULTUREPAILLAGESEMI DIRECTComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciences2. Zero hungerTILLAGEENGRAISMICROORGANISMEfood and beveragesSoil classification04 agricultural and veterinary sciencesDENITRIFICATION15. Life on landCrop rotationGENEPRATIQUE CULTURALETillageSoil conditionerGENE ABUNDANCESAgronomyMULCH040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceRAPPORT CNNIRK GENE16SRDNA GENE[SDE.BE]Environmental Sciences/Biodiversity and EcologyMulchRIZ[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Corrigendum to “Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR” [J. Microbiol. Methods 59 (2004) 327–335]

2005

Microbiology (medical)Denitrifying bacteriaReal-time polymerase chain reactionBiologyMolecular BiologyMicrobiologyGeneMicrobiologyJournal of Microbiological Methods
researchProduct

Shifts in size, genetic structure and activity of the soil denitrifier community by nematode grazing

2010

International audience; Bacterial-feeding nematodes represent an important driver of the soil microbial activity and diversity. This study aimed at characterizing the impact of nematode grazing on a model functional bacterial guild involved in N-cycling, the denitrifiers. Bacterial-feeding nematodes (Cephalobus pseudoparvus) were inoculated into soil microcosms whose indigenous nematofauna had previously been removed. The size, genetic structure and activity of the soil denitrifier community were characterized 15 and 45 days after nematodes inoculation using quantitative PCR of the nirK, nirS and nosZ denitrification genes, fingerprinting of the nirK and nirS genes and denitrification enzym…

BacterivoreDenitrification[SDV]Life Sciences [q-bio]Soil biologyDENITRIFIERSSoil ScienceSOIL BACTERIAL FEEDING NEMATODESBiologyMicrobiologyGrazing pressure03 medical and health sciencesCEPHALOBUS PSEUDOPARVUSGrazingBotanyDGGERelative species abundance030304 developmental biology2. Zero hunger0303 health sciences04 agricultural and veterinary sciences15. Life on landQPCRInsect Science[SDE]Environmental Sciences040103 agronomy & agriculture0401 agriculture forestry and fisheriesMicrocosmTemperature gradient gel electrophoresisEuropean Journal of Soil Biology
researchProduct

Impact of fertilization and direct seeding on activity and abundance of key denitrifier communities in a tropical soil

2007

Affiche, résumé; The aim of this work was to investigate to which extent different practices impacted on the bacterial communities involved in N2O emission.

[SDV] Life Sciences [q-bio][ SDV ] Life Sciences [q-bio]fertilization;direct seeding;denitrifier community;tropical soilfertilization[SDV]Life Sciences [q-bio]direct seedingtropical soildenitrifier community
researchProduct