0000000001234561

AUTHOR

F. Tassi

Geothermal mercury output at Nisyros Volcano (Greece)

Nisyros (Greece) is an active volcano in the eastern part of the South Aegean Active Volcanic Arc (SAAVA), hosting a high-enthalpy geothermal system. On June 2013, an extensive survey on Hg concentrations in different types of matrices (fumarolic fluids, atmosphere, soils and plants) was carried out at Lakki plain, an area affected by widespread soil degassing and fumarolic manifestations. To investigate the spatial distribution of mercury emission and its possible relationships with diffuse degassing of hydrothermal fluids, Hg concentrations in soils were related to their physicochemical parameters (e.g. temperature, soil-pH, hydrothermal gases and elemental C, N and S concentrations). Fur…

research product

Diffusive emissions of hydrothermal methane and higher hydrocarbons from the soil at Nisyros (Greece)

research product

Etna International Training School of Geochemistry. Science meets Practice

Also this year, the “Etna International Training School of Geochemistry. Science meets practice” took place at Mt. Etna, now in its fourth edition. The school was hosted in the historical Volcanological Observatory “Pizzi Deneri”, one of the most important sites of the INGV - Osservatorio Etneo for geochemical and geophysical monitoring. Mount Etna, located in eastern Sicily, is the largest active volcano in Europe and one of the most intensely degassing volcanoes of the world [Allard et al., 1991; Gerlach, 1991]. Mt Etna emits about 1.6 % of global H2O fluxes from arc volcanism [Aiuppa et al., 2008] and 10 % of global average volcanic emission of CO2 and SO2 [D’Alessandro et al., 1997; Cal…

research product

Gas emissions from five volcanoes in northern Chile and implications for the volatiles budget of the Central Volcanic Zone

This study performed the first assessment of the volcanic gas output from the Central Volcanic Zone (CVZ) of northern Chile. We present the fluxes and compositions of volcanic gases (H2O, CO2, H2, HCl, HF, and HBr) from five of the most actively degassing volcanoes in this region—Láscar, Lastarria, Putana, Ollagüe, and San Pedro—obtained during field campaigns in 2012 and 2013. The inferred gas plume compositions for Láscar and Lastarria (CO2/Stot = 0.9–2.2; Stot/HCl = 1.4–3.4) are similar to those obtained in the Southern Volcanic Zone of Chile, suggesting uniform magmatic gas fingerprint throughout the Chilean arc. Combining these compositions with our own UV spectroscopy measurements of …

research product

Geogenic and atmospheric sources for volatile organic compounds in fumarolic emissions from Mt. Etna and Vulcano Island (Sicily, Italy)

In this paper, fluid source(s) and processes controlling the chemical composition of volatile organic compounds (VOCs) in gas discharges from Mt. Etna and Vulcano Island(Sicily, Italy) were investigated. The main composition of the Etnean and Volcano gas emissions is produced by mixing, to various degrees, of magmatic and hydrothermal components. VOCs are dominated by alkanes, alkenes and aromatics, with minor, though significant, concentrations of O-, S- and Cl(F)-substituted compounds. The main mechanism for the production of alkanes is likely related to pyrolysis of organic-matterbearing sediments that interact with the ascending magmatic fluids. Alkanes are then converted to alkene and …

research product

Trace Elements in Soils and Plants from the Active Hydrothermal Area of Nisyros (Greece)

research product

Origin and distribution of methane and C2-C6 hydrocarbons in hydrothermal and cold gaseous emissions in Greece

The Hellenic territory has a very complex geodynamic setting from a long and composite geological history, giving rise to an intense seismic activity deriving and favoring the occurrence of many cold and thermal gas manifestations. Geogenic sources release huge amounts of gases, which have a significant impact on the global balance of the subaerial Carbon Cycle. The study of the geochemistry of the natural gas emissions of the Greek territory is actually underway. In the present work, we focus on methane and light hydrocarbons (C2-C6) to define their origin. Concentrations of methane range from < 2 to 915,200 mmol/mol and its isotopic ratios cover a wide range (d13C from -79.8‰ to +16.9‰…

research product