0000000001234873

AUTHOR

G. Kube

Experimental investigations of backward transition radiation characteristics in extreme ultraviolet region

ABSTRACT This report summarizes the results of an experiment dedicated to the observation of backward transition radia-tion in the EUV spectral region. This radiation was ge nerated by an 855MeV electron beam at a molybdenumtarget. The radiation characteristics in the EUV region are compared to those in the optical region. It wasshown that the radiation measured in the EUV region was more intense than theoretically predicted. As aresult the EUV radiation yield seems to be suci ent for standard beam pro“le diagnostics.Keywords: EUV, Transition radiation, Beam diagnostics 1. INTRODUCTION Transverse pro“le diagnostics in mo dern electron linear accelerators as F ELs or injector linacs is mainl…

research product

Backward transition radiation in the extreme ultraviolet region as a tool for the transverse beam profile diagnostic

The present article summarizes the results of two experiments which were performed to study the radiation properties of backward transition radiation (BTR) in the extreme ultraviolet (EUV) region. This wavelength region is of particular interest for transverse beam profile imaging, because the spatial resolution is improved as a result of the reduced contribution in the imaging process of the fundamental diffraction limit. In addition, the influence of coherent effects in the transition radiation emission process, which have been observed in the visible region, might be mitigated. The first experiment, dedicated to the investigation of the BTR angular characteristics, indicates that the rad…

research product

First Observation of Atomic Levels for the Element Fermium (Z=100)

The atomic level structure of the element fermium was investigated for the first time using a sample of $2.7\ifmmode\times\else\texttimes\fi{}{10}^{10}$ atoms of the isotope $^{255}\mathrm{F}\mathrm{m}$ with a half-life of 20.1 h. The atoms were evaporated from a filament and stored in the argon buffer gas of an optical cell. Atomic levels were sought by the method of resonance ionization spectroscopy using an excimer-dye-laser combination. Two atomic levels were found at wave numbers $(25\text{ }099.8\ifmmode\pm\else\textpm\fi{}0.2)$ and $(25\text{ }111.8\ifmmode\pm\else\textpm\fi{}0.2)\text{ }\text{ }{\mathrm{c}\mathrm{m}}^{\ensuremath{-}1}$. Partial transition rates to the $5{f}^{12}7{s}…

research product

First Determination of the Ionization Potential of Actinium and First Observation of Optical Transitions in Ferminm

For the determination of the first ionization potential of actinium, 227Ac was electrodeposited on a Ta backing and covered with ~1 μm Zr. From this filament, Ac atoms were evaporated at ≥ 1250 °C. By resonant excitation with UV light of 388.67 nm and subsequent excitation with light of ca. 568 nm, Ac was ionized in an external electrical field. By determining the ionization thresholds as a function of the electrical field strength and by extrapolation to zero field strength, the first ionization potential of 43398(3) cm−1 = 5.3807(3) eV was measured.About 1 ng of 255Fm, half life 20.1 h, was prepared at ORNL by milking from 255Es produced in the High Flux Isotope Reactor and shipped to Mai…

research product

Resonance ionization spectroscopy of fermium (Z=100)

Laser spectroscopy has been applied for the first time to measure resonant transition frequencies of fermium (Zs 100). A number of 2.7=10 atoms was electrodeposited on a Ta filament and covered with a 1 mm Ti layer. Fm 10

research product

INVESTIGATION OF FAR-INFRARED SMITH-PURCELL RADIATION AT THE 3.41 MEV ELECTRON INJECTOR LINAC OF THE MAINZ MICROTRON MAMI

research product

Direct Measurement of Focusing Fields in Active Plasma Lenses

Physical review accelerators and beams 21(12), 122801 (2018). doi:10.1103/PhysRevAccelBeams.21.122801

research product

A new upper limit of the electron anti neutrino rest mass from tritium β-decay

Abstract A new upper limit of the electron anti neutrino rest mass has been deduced from the tritium β-decay spectrum. A source of molecular tritium has been investigated with a new solenoid retarding spectrometer. The results are m ν ϵ 2 = −38.8 ± 34.1 stat ± 15.1 syst (eV) 2 /c 4 from which we conclude m ν ϵ ≤ 7.2 eV/c 2 with 95% c.l. Our β-endpoint corresponds to a 3H-3He atomic mass difference of Δm( 3 H- 3 He) = 18590.8 ± 3 eV/c 2 (1σ) .

research product

Prospects of Ion Chemical Reactions with Heavy Elements in the Gas Phase

Heavy element chemistry is related to the fundamental interest that lies in exploring the upper limits of the periodic table. Chemical properties of the heaviest elements have already been studied at single atoms in aqueous solutions and in the gas phase up to an atomic number Z = 107. These techniques allow to study nuclides with half lives as short as about 1 s. Next generation chemistry experiments could be envisaged with an ion trap technique already developed for stable isotopes. At very low production rates in the order of 1 per 100 s and/or half lives as short as about 10 ms, the ion-molecule reactions can be studied in a buffer gas cell, in which the heavy elements are stopped and t…

research product

Improved limit on the electron-antineutrino rest mass from tritium ß-decay

Abstract The endpoint region of the β-spectrum of tritium was remeasured by an electrostatic spectrometer with magnetic guiding field. It enabled the search for a rest mass of the electron-antineutrino with improved precision. The result is m2v=−39±34stat±15syst(eV/c2)2, from which an upper limit of mv m( T )−m( 3 He )=18 591±3 eV /c 2 .

research product

On the Line Shape of Backward Emitted Parametric X-Radiation

Parametric X radiation, emitted in opposite direction of an electron which traverses a semi infinite single crystal on a hypothetical straight trajectory, features a Lorentzian line shape with extremely narrow width. However, small angle scattering of the electron in the Coulomb potential of the crystal atoms results in a stochastic change of the electron direction. The latter leads to a line broadening which can be understood essentially as a stochastic frequency modulation of the exponentially damped wave train. The line shape has been calculated analytically by well known probabilistic methods. Results are quoted for various reflections of a silicon single crystal at an electron beam ene…

research product

Novel digital K-edge imaging system with transition radiation from an 855-MeV electron beam

A novel K-edge imaging method has been developed at the Mainz Microtron MAMI aiming at a very efficient use of the transition radiation (TR) flux generated by the external 855-MeV electron beam in a foil stack. A fan-like quasi-monochromatic hard X-ray beam is produced from the /spl plusmn/1-mrad-wide TR cone with a highly oriented pyrolytic graphite (HOPG) crystal. The absorption of the object in front of a 30 mm/spl times/10 mm pn charge-coupled device (pn-CCD) photon detector is measured at every pixel by a broad-band energy scan around the K-absorption edge. This is accomplished by a synchronous variation of the lateral crystal position and the electron beam direction which defines also…

research product

Observation of optical Smith-Purcell radiation at an electron beam energy of 855 MeV.

Smith-Purcell radiation, generated when a beam of charged particles passes close to the surface of a diffraction grating, has been studied in the visible spectral range at wavelengths of 360 and 546 nm with the low emittance 855 MeV electron beam of the Mainz Microtron MAMI. The beam focused to a spot size of $4 \ensuremath{\mu}\mathrm{m}$ (full width at half maximum) passed over optical diffraction gratings of echelle profiles with blaze angles of $0.8\ifmmode^\circ\else\textdegree\fi{}, 17.27\ifmmode^\circ\else\textdegree\fi{},$ and $41.12\ifmmode^\circ\else\textdegree\fi{}$ and grating periods of 0.833 and $9.09 \ensuremath{\mu}\mathrm{m}.$ Taking advantage of the specific emission chara…

research product

Direct Measurement of Focusing Fields in Active Plasma Lenses

Active plasma lenses have the potential to enable broad-ranging applications of plasma-based accelerators owing to their compact design and radially symmetric kT/m-level focusing fields, facilitating beam-quality preservation and compact beam transport. We report on the direct measurement of magnetic field gradients in active plasma lenses and demonstrate their impact on the emittance of a charged particle beam. This is made possible by the use of a well-characterized electron beam with 1.4 mm mrad normalized emittance from a conventional accelerator. Field gradients of up to 823 T/m are investigated. The observed emittance evolution is supported by numerical simulations, which suggest the …

research product

How narrow is the linewidth of parametric X-ray radiation?

Parametric x-ray or quasi-Cherenkov radiation is produced by the passage of an electron through a crystal. A critical absorber technique has been employed to investigate its linewidth. Experiments have been performed with the 855MeV electron beam from the Mainz Microtron MAMI. Thin absorber foils were mounted in front of a CCD camera serving as a position sensitive photon detector. Upper limits of the linewidth of 1.2 and 3.5eV were determined for the (111) and (022) reflections of silicon at photon energies of 4966 and 8332eV. These limits originate from geometrical line broadening effects that can be optimized to reach the ultimate limit given by the finite length of the wave train. {copy…

research product

Transition radiation in the x-ray region from a low emittance 855 MeV electron beam

A quasi-monochromatic hard x-ray beam with a photon energy of 33 keV has been produced from transition radiation (TR) at the Mainz Microtron MAMI. The radiator was a stack of 30 polyimide foils of 25 μm thickness and 75 μm separation and the monochromator a highly-oriented pyrolytic graphite crystal. The intrinsic bandwidth was measured with a critical absorption technique to be 100 eV. On the basis of these experiments a photon flux of 4⋅109/mm2s over an illuminated area of 5.7×125 mm2 can be expected from an optimized beryllium radiator at a beam current of 100 μA. At the K-absorption edge of titanium at 5 keV narrow band transition radiation has been observed from a stack of four foils o…

research product