0000000001237395

AUTHOR

Tim Langen

0000-0003-2561-0326

Experimental demonstration of single-site addressability in a two-dimensional optical lattice

We demonstrate single site addressability in a two-dimensional optical lattice with 600 nm lattice spacing. After loading a Bose-Einstein condensate in the lattice potential we use a focused electron beam to remove atoms from selected sites. The patterned structure is subsequently imaged by means of scanning electron microscopy. This technique allows us to create arbitrary patterns of mesoscopic atomic ensembles. We find that the patterns are remarkably stable against tunneling diffusion. Such micro-engineered quantum gases are a versatile resource for applications in quantum simulation, quantum optics and quantum information processing with neutral atoms.

research product

High-resolution scanning electron microscopy of an ultracold quantum gas

Our knowledge of ultracold quantum gases is strongly influenced by our ability to probe these objects. In situ imaging combined with single-atom sensitivity is an especially appealing scenario, as it can provide direct information on the structure and the correlations of such systems. For a precise characterization a high spatial resolution is mandatory. In particular, the perspective to study quantum gases in optical lattices makes a resolution well below one micrometre highly desirable. Here, we report on a novel microscopy technique, which is based on scanning electron microscopy and allows for the detection of single atoms inside a quantum gas with a spatial resolution of better than 15…

research product