0000000001239198

AUTHOR

T. Yang

showing 35 related works from this author

Study ofJ/ψ→pp¯andJ/ψ→nn¯

2012

The decays J/psi -> p (p) over bar and J/psi -> n (n) over bar have been investigated with a sample of 225.2 x 10(6) J/psi events collected with the BESIII detector at the BEPCII e(+)e(-) collider. The branching fractions are determined to be B(J/psi -> p (p) over bar) = (2.112 +/- 0.004 +/- 0.031 x 10(-3) and B(J/psi -> n (n) over bar) =(2.07 +/- 0.01 +/- 0.17) x 10(-3). Distributions of the angle theta between the proton or antineutron and the beam direction are well described by the form 1 + alpha cos(2)theta, and we find alpha = 0.595 +/- 0.012 +/- 0.015 for J/psi -> p (p) over bar and alpha = 0.50 +/- 0.04 +/- 0.21 for J/psi -> n (n) over bar. Our branching- fraction results suggest a …

BaryonPhysicsNuclear and High Energy PhysicsQCD sum rulesProtonElectron–positron annihilationPhase angleAnalytical chemistryHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNucleonAntineutronBar (unit)Physical Review D
researchProduct

Updated Search for the Flavor-Changing Neutral-Current Decay D^0 \to {\mu} + {\mu}-

2010

We report on a search for the flavor-changing neutral-current decay D0 \to {\mu}+ {\mu}- in pp collisions at \surd s = 1.96 TeV using 360 pb-1 of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. A displaced vertex trigger selects long-lived D0 candidates in the {\mu}+ {\mu}-, {\pi}+{\pi}-, and K-{\pi}+ decay modes. We use the Cabibbo-favored D0 \to K-{\pi}+ channel to optimize the selection criteria in an unbiased manner, and the kinematically similar D0 \to{\pi}+ {\pi}- channel for normalization. We set an upper limit on the branching fraction (D0 --> {\mu}+ {\mu}-) < 2.1 E-7 (3.0 E-7) at the 90% (95%) confidence level.

PhysicsNuclear and High Energy PhysicsAntiparticleMuonMeson010308 nuclear & particles physicsBranching fractionFlavor-changing neutral currentHadron01 natural sciencesHigh Energy Physics - Experiment3. Good healthNuclear physicsCrystallographyParticle decayTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciences12.15.Mm 13.20.Fc 14.40.Lb[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::Experiment010306 general physicsDimensionless quantity
researchProduct

Volume IV The DUNE far detector single-phase technology

2020

This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.

Technology530 Physicsmedia_common.quotation_subjectNeutrino oscillations liquid Argon TPC DUNE technical design report single phase LArTPCElectronsFREE-ELECTRONS01 natural sciences7. Clean energy09 Engineering030218 nuclear medicine & medical imagingStandard Model03 medical and health sciencesneutrino0302 clinical medicineLIQUID ARGON0103 physical sciencesGrand Unified TheoryHigh Energy PhysicsAerospace engineeringInstrumentationInstruments & InstrumentationMathematical Physicsmedia_commonPhysicsScience & Technology02 Physical Sciences010308 nuclear & particles physicsbusiness.industryDetectorLıquıd ArgonfreeNuclear & Particles PhysicsSymmetry (physics)UniverseLong baseline neutrino experiment CP violationAntimatterNeutrinobusinessEvent (particle physics)
researchProduct

First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

2020

The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…

TechnologyHIGH-ENERGYPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detectorbeam transportNoble liquid detectors (scintillation ionization double-phase)Cms Experıment01 natural sciences7. Clean energy09 EngineeringParticle identificationHigh Energy Physics - Experiment030218 nuclear medicine & medical imagingHigh Energy Physics - Experiment (hep-ex)0302 clinical medicineNoble liquid detectors (scintillationDetectors and Experimental TechniquesInstrumentationInstruments & Instrumentationphysics.ins-dettime resolutionMathematical PhysicsPhysics02 Physical SciencesTime projection chamberLarge Hadron ColliderDetectorInstrumentation and Detectors (physics.ins-det)double-phase)Nuclear & Particles PhysicsLIGHTNeutrinoParticle Physics - ExperimentperformanceNoble liquid detectors(scintillation ionization double-phase)noiseCERN LabLarge detector systems for particle and astroparticle physics Noble liquid detectors (scintillation ionization double-phase) Time projection Chambers (TPC)530 Physicsenergy lossTime projection chambersFOS: Physical sciencesParticle detectorNuclear physics03 medical and health sciencesneutrino: deep underground detector0103 physical sciencesionizationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]signal processingactivity reportScience & Technology010308 nuclear & particles physicshep-exLarge detector systems for particle and astroparticle physicsTime projection Chambers (TPC)530 Physiksensitivitycalibrationtime projection chamber: liquid argonExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicsingle-phase)Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation ionization double-phase); Time projection Chambers (TPC)High Energy Physics::Experimentphoton: detectorparticle identificationcharged particle: irradiationBeam (structure)
researchProduct

Neutrino interaction classification with a convolutional neural network in the DUNE far detector

2020

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…

Neutrino Oscillations. Neutrino detectors.Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detector01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - Experimentcharged currentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics ExperimentsMuon neutrinoneutrino/e: particle identificationNeutrino detectorsDetectors and Experimental Techniquesphysics.ins-detCharged currentneutrino: interactionInformáticaPhysicsTelecomunicacionesNeutrino oscillationsPhysicsNeutrino interactions neural network DUNE Deep Underground Neutrino ExperimentInstrumentation and Detectors (physics.ins-det)Experiment (hep-ex)Neutrino detectorPhysical SciencesCP violationNeutrinoParticle Physics - ExperimentParticle physicsdata analysis method530 Physicsneural networkAstrophysics::High Energy Astrophysical PhenomenaCONSERVATIONFOS: Physical sciencesAstronomy & AstrophysicsDeep Learningneutrino: deep underground detectorneutrino physics0103 physical sciencesNeutrino Oscillations. Neutrino detectorsObject DetectionNeutrinoCP: violationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinos010306 general physicsNeutrino oscillationneutrino/mu: particle identificationIOUScience & TechnologyDUNENeutrino interactions010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyFísicaNeutrino InteractionDetector530 PhysiksensitivityefficiencyHigh Energy Physics::ExperimentElectron neutrino
researchProduct

Two-photon widths of theχc0,2states and helicity analysis forχc2→γγ

2012

Based on a data sample of 106 X 10(6) psi' events collected with the BESIII detector, the decays psi' -> gamma chi(c0,2), chi(c0,2) -> gamma gamma are studied to determine the two-photon widths of the chi(c0,2) states. The two-photon decay branching fractions are determined to be B(chi(c0) -> gamma gamma) = (2.24 +/- 0.19 +/- 0.12 +/- 0.08) X 10(-4) and B(chi(c2) -> gamma gamma) = (3.21 +/- 0.18 +/- 0.17 +/- 0.13) X 10(-4) From these, the two-photon widths are determined to be Gamma(gamma gamma)(chi(c0)) = (2.33 +/- 0.20 +/- 0.13 +/- 0.17) keV, Gamma(gamma gamma)(chi(c2)) = (0.63 +/- 0.04 +/- 0.04 +/- 0.04) keV, and R = Gamma(gamma gamma)(chi(c2))/Gamma(gamma gamma)(chi(c0)) = 0.271 +/- 0.0…

PhysicsNuclear physicsNuclear and High Energy PhysicsAnnihilationElectron–positron annihilationLambdaWidth ratioHelicityEvent generatorGamma gammaPhysical Review D
researchProduct

Evidence for a Particle Produced in Association with Weak Bosons and Decaying to a Bottom-Antibottom Quark Pair in Higgs Boson Searches at the Tevatr…

2012

Aaltonen, T. et al.

FERMILAB TEVATRON COLLIDERTop quarkParticle physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Higgs-Boson decaysSTANDARD MODEL; PARTON DISTRIBUTIONS; SYMMETRIES; proton antiproton collisions; FERMILAB TEVATRON COLLIDER; Standard Model Higgs boson; HIGGS-BOSON production; Higgs-Boson decaysSTANDARD MODELGeneral Physics and AstronomyFOS: Physical sciencesElementary particleStandard Model Higgs boson7. Clean energy01 natural sciencesVector bosonStandard ModelHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsTEVATRONBosonStandard-model Higgs bosonsPhysicsHIGGS-BOSON productionHIGGS BOSON010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::PhenomenologyScalar bosonW and Z bosonsPARTON DISTRIBUTIONSExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHiggs bosonSYMMETRIESproton antiproton collisionsCDFLimits on production of particlesHigh Energy Physics::Experiment
researchProduct

Search for a Heavy Toplike Quark inpp¯Collisions ats=1.96  TeV

2011

We present the results of a search for pair production of a heavy toplike (t') quark decaying to Wq final states using data corresponding to an integrated luminosity of 5.6 fb(-1) collected by the CDF II detector in pp collisions at √s=1.96 TeV. We perform parallel searches for t'→Wb and t'→Wq (where q is a generic down-type quark) in events containing a lepton and four or more jets. By performing a fit to the two-dimensional distribution of total transverse energy versus reconstructed t' quark mass, we set upper limits on the t't' production cross section and exclude a standard model fourth-generation t' quark decaying to Wb (Wq) with mass below 358 (340) GeV/c(2) at 95% C.L.

PhysicsQuarkParticle physicsLuminosity (scattering theory)010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyElementary particleKinetic energy01 natural sciencesStandard ModelNuclear physicsPair production0103 physical sciencesGrand Unified TheoryHigh Energy Physics::Experiment010306 general physicsLeptonPhysical Review Letters
researchProduct

Observation of s-Channel Production of Single Top Quarks at the Tevatron

2014

We report the first observation of single-top-quark production in the s channel through the combination of the CDF and D0 measurements of the cross section in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7fb-1 per experiment. The measured cross section is σs=1.29-0.24+0.26pb. The probability of observing a statistical fluctuation of the background to a cross section of the observed size or larger is 1.8×10-10, corresponding to a significance of 6.3 standard deviations for the presence of an s-channel contribution to the production of single-top quarks. © 2014 American Physical Society.

P(P)OVER-BAR COLLISIONSTevatronGeneral Physics and AstronomyCHANGING NEUTRAL CURRENTS01 natural sciences7. Clean energyStandard deviationHigh Energy Physics - ExperimentCHANGING NEUTRAL CURRENTS; B-JET IDENTIFICATION; P(P)OVER-BAR COLLISIONS; FERMILAB-TEVATRON; ROOT-S=1.96 TEV; COUPLINGS; DETECTOR; SEARCH; FB(-1); DECAYSHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SCALEPhysicsB-JET IDENTIFICATION02 Physical SciencesPhysicsSigmaCOUPLINGSROOT-S=1.96 TEVPhysical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGProduction (computer science)Communication channelFERMILAB-TEVATRONQuarkParticle physicsGeneral PhysicsPhysics MultidisciplinaryFOS: Physical sciencesParticle Physics; Collider Physics; Top quark; Single top productionDECAYSCDF CollaborationNuclear physicsPhysics and Astronomy (all)Cross section (physics)SEARCH0103 physical sciencesParticle Physics010306 general physicsDETECTORFB(-1)Science & Technology010308 nuclear & particles physicshep-exTop quarkCollider PhysicsExperimental High Energy PhysicsSingle top productionHigh Energy Physics::ExperimentEnergy (signal processing)D0 Collaboration
researchProduct

Search for Neutral Higgs Bosons in Events with Multiple Bottom Quarks at the Tevatron

2012

The combination of searches performed by the CDF and D0 collaborations at the Fermilab Tevatron Collider for neutral Higgs bosons produced in association with b quarks is reported. The data, corresponding to 2.6fb -1 of integrated luminosity at CDF and 5.2fb -1 at D0, have been collected in final states containing three or more b jets. Upper limits are set on the cross section multiplied by the branching ratio varying between 44 pb and 0.7 pb in the Higgs boson mass range 90 to 300 GeV, assuming production of a narrow scalar boson. Significant enhancements to the production of Higgs bosons can be found in theories beyond the standard model, for example, in supersymmetry. The results are int…

Nuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard ModelSTANDARD MODELP(P)OVER-BAR COLLISIONSTevatronFOS: Physical sciencesMASSLESS PARTICLES7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentStandard ModelNuclear physicsHigh Energy Physics - Experiment (hep-ex)Higgs particle: search for | Higgs particle: associated production | minimal supersymmetric standard model: parameter space | bottom: multiple production | cross section: branching ratio: upper limit | benchmark | DZERO | CDF | anti-p p: interaction | experimental results | Batavia TEVATRON Coll | anti-p p --> Higgs particle bottom anything | Higgs particle --> bottom anti-bottom | 1960 GeV-cms0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]BROKEN SYMMETRIESTEVATRONMASSES010306 general physicsDETECTORSUPERSYMMETRYBosonPhysicsHIGGS BOSON010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDETECTOR; SUPERSYMMETRY; MASSES; MSSM; ROOT-S=1.96 TEV; BROKEN SYMMETRIES; MASSLESS PARTICLES; STANDARD MODEL; P(P)OVER-BAR COLLISIONSSupersymmetryScalar bosonROOT-S=1.96 TEVExperimental High Energy PhysicsHiggs bosonComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCDFHigh Energy Physics::ExperimentMSSMMinimal Supersymmetric Standard Model
researchProduct

Search for the supersymmetric partner of the top quark inpp¯collisions ats=1.96  TeV

2010

We present a search for the lightest supersymmetric partner of the top quark in proton-antiproton collisions at a center-of-mass energy root s = 1: 96 TeV. This search was conducted within the framework of the R parity conserving minimal supersymmetric extension of the standard model, assuming the stop decays dominantly to a lepton, a sneutrino, and a bottom quark. We searched for events with two oppositely-charged leptons, at least one jet, and missing transverse energy in a data sample corresponding to an integrated luminosity of 1 fb(-1) collected by the Collider Detector at Fermilab experiment. No significant evidence of a stop quark signal was found. Exclusion limits at 95% confidence …

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsTop quark010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDown quarkOmega baryon7. Clean energy01 natural sciencesBottom quarkNuclear physicsR-parity0103 physical sciencesUp quarkHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsCollider Detector at FermilabPhysical Review D
researchProduct

Beam test results of IHEP-NDL Low Gain Avalanche Detectors(LGAD)

2020

A High-Granularity Timing Detector (HGTD) is proposed based on the Low-Gain Avalanche Detector (LGAD) for the ATLAS experiment to satisfy the time resolution requirement for the up-coming High Luminosity at LHC (HL-LHC). We report on beam test results for two proto-types LGADs (BV60 and BV170) developed for the HGTD. Such modules were manufactured by the Institute of High Energy Physics (IHEP) of Chinese Academy of Sciences (CAS) collaborated with Novel Device Laboratory (NDL) of the Beijing Normal University. The beam tests were performed with 5 GeV electron beam at DESY. The timing performance of the LGADs was compared to a trigger counter consisting of a quartz bar coupled to a SiPM read…

Electron beamNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsFÍSICA DE ALTA ENERGIAPhysics::Instrumentation and DetectorsFOS: Physical sciences01 natural sciences010305 fluids & plasmassymbols.namesakeSilicon photomultiplierOpticsLGAD0103 physical sciencesGaussian functionelectron: irradiationphotomultiplier: silicon[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentationphysics.ins-detPhysicsLarge Hadron ColliderLuminosity (scattering theory)business.industryfluctuationDetectorATLAS experimentTime resolutionDESYInstrumentation and Detectors (physics.ins-det)ATLASsymbolsHigh Energy Physics::ExperimentbusinessCFDBeam (structure)performancesemiconductor detector: design
researchProduct

Measurement of theCP-violating phaseβsJ/ψϕinBs0→J/ψϕdecays with the CDF II detector

2012

We present a measurement of the \CP-violating parameter \betas using approximately 6500 $$\BsJpsiPhi$$ decays reconstructed with the CDF\,II detector in a sample of $$p\bar p$$ collisions at $$\sqrt{s}=1.96$$ TeV corresponding to 5.2 fb$$^{-1}$$ integrated luminosity produced by the Tevatron Collider at Fermilab. We find the \CP-violating phase to be within the range $$\betas \in [0.02, 0.52] \cup [1.08, 1.55]$$ at 68% confidence level where the coverage property of the quoted interval is guaranteed using a frequentist statistical analysis. This result is in agreement with the standard model expectation at the level of about one Gaussian standard deviation. We consider the inclusion of a po…

PhysicsNuclear and High Energy PhysicsTop quarkParticle physics010308 nuclear & particles physicsPhase (waves)TevatronInterval (mathematics)State (functional analysis)01 natural sciencesLuminosityStandard ModelParticle decayClassical mechanicsAngular distribution0103 physical sciencesCP violationSensitivity (control systems)010306 general physicsFlavorPhysical Review D
researchProduct

Combination of CDF and D0 W-Boson mass measurements

2013

We summarize and combine direct measurements of the mass of the W boson in √s=1.96 TeV proton-antiproton collision data collected by CDF and D0 experiments at the Fermilab Tevatron Collider. Earlier measurements from CDF and D0 are combined with the two latest, more precise measurements: a CDF measurement in the electron and muon channels using data corresponding to 2.2 fb-1 of integrated luminosity, and a D0 measurement in the electron channel using data corresponding to 4.3 fb-1 of integrated luminosity. The resulting Tevatron average for the mass of the W boson is M W=80387±16 MeV. Including measurements obtained in electron-positron collisions at LEP yields the most precise value of M W…

Particle physicsNuclear and High Energy PhysicsInclusive production with identified leptonsSTANDARD MODELTevatronDecays of W bosonsFOS: Physical sciencesddc:500.201 natural sciences7. Clean energyStandard Modellaw.inventionHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]photonsFermilab010306 general physicsColliderTEVATRONNuclear ExperimentDETECTORGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)BosonPhysicsLuminosity (scattering theory)MuonLarge Hadron Collider010308 nuclear & particles physicsApplications of electroweak models to specific processesHigh Energy Physics::Phenomenologyor other nonhadronic particlesW bosonsW bosons; Applications of electroweak models to specific processes; Decays of W bosons; Inclusive production with identified leptons; photons; or other nonhadronic particlesExperimental High Energy PhysicsCDFPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentLHCSTANDARD MODEL; LHC; DETECTOR
researchProduct

Combination of the top-quark mass measurements from the Tevatron collider

2012

Aaltonen, T. et al.

FERMILAB TEVATRON COLLIDERNuclear and High Energy PhysicsPAIR PRODUCTIONNuclear TheoryFOS: Physical sciencesLibrary science01 natural sciences7. Clean energyWorld classHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsTEVATRONNuclear Experimentproton antiproton collisions; FERMILAB TEVATRON COLLIDER; Top quark; Top quark properties; JET ENERGY SCALE; PARTON DISTRIBUTIONS; PAIR PRODUCTIONPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTop quark propertiesTop quarkResearch councilPARTON DISTRIBUTIONSExperimental High Energy Physicsproton antiproton collisionsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCDFHigh Energy Physics::ExperimentJET ENERGY SCALE
researchProduct

Observation of Two NewN*Resonances in the Decayψ(3686)→pp¯π0

2013

Based on 106 x 10(6)psi(3686) events collected with the BESIII detector at the BEPCII facility, a partial wave analysis of psi(3686) -> p (p) over bar pi(0) is performed. The branching fraction of this channel has been determined to be B psi(3686) -> p (p) over bar pi(0) = (1.65 +/- 0.03 +/- 0.15) x 10(-4). In this decay, 7 N* intermediate resonances are observed. Among these, two new resonances, N(2300) and N(2570) are significant, one 1/2(+) resonance with a mass of 2300(-30-0)(+40+109) MeV/c(2) and width of 340(-30-58)(+30+110) MeV/c(2), and one 5/2(-) resonance with a mass of 2570(-10-10)(+19+34) MeV/c(2) and width of 250(-24-21)(+14+69) MeV/c(.)(2) For the remaining 5 N* intermediate r…

BaryonNuclear physicsPhysicsBranching fractionElectron–positron annihilationPartial wave analysisAnalytical chemistryGeneral Physics and AstronomyResonanceBar (unit)Physical Review Letters
researchProduct

Tevatron Combination of Single-Top-Quark Cross Sections and Determination of the Magnitude of the Cabibbo-Kobayashi-Maskawa Matrix Element Vtb

2015

et al.

QuarkTop quarkParticle physicsP(P)OVER-BAR COLLISIONS; JET IDENTIFICATION; ROOT-S=7 TEV; HIGGS-BOSON; CHANNEL; DETECTOR; ATLASJET IDENTIFICATIONmeasured [channel cross section]P(P)OVER-BAR COLLISIONSTevatronGeneral Physics and AstronomyFOS: Physical sciencesmeasured [cross section]Astrophysics::Cosmology and Extragalactic Astrophysicssingle production [top]7. Clean energyHigh Energy Physics - ExperimentMeasurements of cross sections for single-top-quark productionNuclear physicsproton-antiproton collisionsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)CHANNELDZEROddc:550[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Batavia TEVATRON Collcross section measurementDETECTORPhysicsscattering [anti-p p]1960 GeV-cmsROOT-S=7 TEVCabibbo–Kobayashi–Maskawa matrixSigmaATLASMeasurements of cross sections for single-top-quark production; proton-antiproton collisions; cross section measurement2 [dimension]missing-energy [transverse energy]CKM matrixExperimental High Energy PhysicsHiggs bosonComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCDFHigh Energy Physics::ExperimentPhysics and Astronomy (all) Nuclear and high energy physicscolliding beams [anti-p p]coupling [quark]HIGGS-BOSON
researchProduct

Determination of the number of J/psi events with J/psi -&gt; inclusive decays

2012

The number of J/psi events collected with the BESIII detector at the BEPC II from June 12 to July 28, 2009 is determined to be (225.3 +/- 2.8) x 10(6) using J/psi -&gt; inclusive events, where the uncertainty is the systematic error and the statistical one is negligible.

PhysicsSystematic errorNuclear and High Energy PhysicsElectron–positron annihilationDetectorMonte Carlo methodBESIIIInclusive eventsAstronomy and AstrophysicsJ/ψ→Nuclear physicsBESIII detector; Inclusive events; J/ψ→; Number of J/ψ eventsNumber of J/ψ eventsJ/psi -> inclusive eventsnumber of J/psi eventsBESIII detectorInstrumentationChinese physics c
researchProduct

Volume I. Introduction to DUNE

2020

Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008

detector: technologydeep underground detector [neutrino]530 PhysicsPhysics::Instrumentation and DetectorsData managementmedia_common.quotation_subjectfar detector610Long baseline neutrino experiment CP violation01 natural sciences030218 nuclear medicine & medical imagingNeutrino oscillations. Neutrino Detectors. CP violation. Matter stabilitydesign [detector]03 medical and health sciencesneutrinoneutrino: deep underground detector0302 clinical medicinenear detector0103 physical sciencesDeep Underground Neutrino Experimentddc:610Neutrino oscillationInstrumentationdetector: designMathematical Physicsactivity reportmedia_common010308 nuclear & particles physicsbusiness.industryNeutrino oscillations. Neutrino Detectors. CP violation. Matter stability.DetectorVolume (computing)Modular designtime projection chamber: liquid argonUniversetechnology [detector]liquid argon [time projection chamber]Systems engineeringHigh Energy Physics::ExperimentNeutrino oscillations DUNE technical design report executive summary detector technologiesdata managementNeutrinobusiness
researchProduct

Tevatron constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quark pairs.

2015

et al.

QuarkParticle physicsHiggs bosonSTANDARD MODELTevatronFOS: Physical sciencesGeneral Physics and AstronomyATLAS DETECTORD0 EXPERIMENT01 natural sciences7. Clean energy530CDF collaborationHigh Energy Physics - ExperimentVector bosonNuclear physicsproton-antiproton collisionsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)SEARCH0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fysik010306 general physicsPhysics and Astronomy (all). B-JET IDENTIFICATIONCDF collaboration; Higgs boson; proton-antiproton collisionsDETECTORBosonPhysicsB-JET IDENTIFICATIONLarge Hadron Collider010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyATLASD0 experimentPARTON DISTRIBUTIONSExperimental High Energy PhysicsPhysical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHiggs bosonATLAS; Higgs; Hadron-Hadron ScatteringHigh Energy Physics::ExperimentLHCB-JET IDENTIFICATION; STANDARD MODEL; PARTON DISTRIBUTIONS; ATLAS; DETECTOR; D0 EXPERIMENT; LHC; SEARCH
researchProduct

First Observation of theM1Transitionψ(3686)→γηc(2S)

2012

Using a sample of 106×10(6) ψ(3686) events collected with the BESIII detector at the BEPCII storage ring, we have made the first measurement of the M1 transition between the radially excited charmonium S-wave spin-triplet and the radially excited S-wave spin-singlet states: ψ(3686)→γη(c)(2S). Analyses of the processes ψ(3686)→γη(c)(2S) with η(c)(2S)→K(S)(0)K(±)π(∓) and K(+)K(-)π(0) give an η(c)(2S) signal with a statistical significance of greater than 10 standard deviations under a wide range of assumptions about the signal and background properties. The data are used to obtain measurements of the η(c)(2S) mass (M(η(c)(2S))=3637.6±2.9(stat)±1.6(syst) MeV/c(2)), width (Γ(η(c)(2S))=16.9±6.4(…

PhysicsBranching fractionElectron–positron annihilationExcited stateAnalytical chemistryGeneral Physics and AstronomyPhysical Review Letters
researchProduct

Tevatron Run II combination of the effective leptonic electroweak mixing angle

2018

The Ministry of Science and Innovation and the Consolider-Ingenio 2010 Program and the European Union community Marie Curie Fellowship Contract No. 302103.

Drell-Yan processsemianalytical programsPhysics and Astronomy (miscellaneous)FERMION PAIR PRODUCTIONUPGRADETevatronhadron-colliders01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & Fieldselectron: pair productionHigh Energy Physics - Experiment (hep-ex)MONTE-CARLOUNIVERSAL MONTE-CARLOELECTROMAGNETIC CALORIMETERDZERO[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSangular distributionBatavia TEVATRON CollMonte CarloPhysicsscattering [anti-p p]gauge bosonPhysicsElectroweak interactionDrell–Yan processWeinberg anglespontaneous symmetry breaking [electroweak interaction]muon: pair productionPhysical Sciencesmixing angle [electroweak interaction]bosonPHOTOSmass: measured [W]asymmetryParticle physicsFOS: Physical sciencesSEMIANALYTICAL PROGRAMddc:500.2Astronomy & Astrophysicselectroweak interaction: spontaneous symmetry breaking114 Physical sciences530programmingW: mass: measuredStandard Modelanti-p p: colliding beams[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]hadroproduction [Z0]0103 physical sciencesanti-p p: scatteringddc:530High Energy Physicspair production [electron]pair production [muon]CALORIMETER010306 general physicsQED RADIATIVE-CORRECTIONSQed radiative-corrections; fermion pair production; universal; Monte Carlo; parton distributions; hadron-colliders; electromagnetic; calorimeter;semianalytical programs; E(+)E(-) annihilation; boson; production; D0 detectorGauge bosonBOSON PRODUCTIONMuonScience & Technologyelectroweak interaction: mixing angleAnti-p p: scattering | anti-p p: colliding beams | Z0: hadroproduction | Z0: leptonic decay | electroweak interaction: spontaneous symmetry breaking | electroweak interaction: mixing angle | muon: pair production | W: mass: measured | Weinberg angle | Batavia TEVATRON Coll | angular distribution | electron: pair production | Drell-Yan process | gauge boson | programming | asymmetry | CDF | DZERO | experimental resultsIDENTIFICATION010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyuniversalWeinberg angleZ0: hadroproductionQED RADIATIVE-CORRECTIONS; FERMION PAIR PRODUCTION; UNIVERSAL; MONTE-CARLO; PARTON DISTRIBUTIONS; HADRON COLLIDERS; ELECTROMAGNETIC; CALORIMETER; SEMIANALYTICAL PROGRAM; E(+)E(-) ANNIHILATION; BOSON; PRODUCTION; D0 DETECTORleptonic decay [Z0]E(+)E(-) ANNIHILATIONelectromagneticPARTON DISTRIBUTIONSExperimental High Energy PhysicsZ0: leptonic decayD0 DETECTORCDFHigh Energy Physics::Experimentproductioncolliding beams [anti-p p]Leptonexperimental results
researchProduct

Search for a light exotic particle inJ/ψradiative decays

2012

Using a data sample containing 1.06x10^8 psi' events collected with the BESIII detector at the BEPCII electron-positron collider, we search for a light exotic particle X in the process psi' -&gt; pi^+ pi^- J/psi, J/psi -&gt; gamma X, X -&gt; mu^+ mu^-. This light particle X could be a Higgs-like boson A^0, a spin-1 U boson, or a pseudoscalar sgoldstino particle. In this analysis, we find no evidence for any mu^+mu^- mass peak between the mass threshold and 3.0 GeV/c^2. We set 90%-confidence-level upper limits on the product-branching fractions for J/psi -&gt; gamma A^0, A^0 -&gt; mu^+ mu^- which range from 4x10^{-7} to 2.1x10^{-5}, depending on the mass of A^0, for M(A^0)&lt;3.0 GeV/c^2. On…

BOSONSPhysicsNuclear and High Energy PhysicsParticle physicsRange (particle radiation)ENERGIESElectron–positron annihilationGRAVITINOFOS: Physical sciencesSupersymmetryHigh Energy Physics - Experimentlaw.inventionNuclear physicsPseudoscalarHigh Energy Physics - Experiment (hep-ex)lawSgoldstinoRadiative transferHigh Energy Physics::ExperimentColliderBosonPhysical Review D
researchProduct

Observation of the Baryonic Flavor-Changing Neutral Current Decay Λb0→Λμ+μ-

2011

8 páginas, 2 figuras, 4 tablas.-- PACS numbers: 13.30.Ce, 12.15.Mm, 14.20.Mr.-- CDF Collaboration: et al.

PhysicsParticle physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Neutral current010308 nuclear & particles physicsBranching fractionFlavor-changing neutral current[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]TevatronGeneral Physics and Astronomyddc:500.2Leptonicand radiative decays01 natural sciencesBaryonFLAVOR CHANGING NEUTRAL CURRENTNeutral currents0103 physical sciencessemileptonic[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]CDFBottom baryonsTEVATRON010306 general physics13.25 Hw 13.20 He 13.30 -a
researchProduct

Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

2018

The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of √s=1.96  TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is At¯tFB=0.128±0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions.

Top quarkTevatronGeneral Physics and Astronomypair production [top]01 natural sciences7. Clean energyHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)DZEROSubatomic Physicsddc:550[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Quantum ChromodynamicsBatavia TEVATRON CollGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)media_commonPhysicsscattering [anti-p p]Particle properties02 Physical Sciencesrapidity: differenceCDF; Tevatron; top-quarkPhysicsdifference [rapidity]asymmetry [angular distribution]kinematicsPhysical Sciencestop: pair productionQuarkParticle physicsGeneral Physicsangular distribution: asymmetryTevatron Collidermedia_common.quotation_subjectPhysics MultidisciplinaryFOS: Physical sciencesForward backwardddc:500.2Hadron-hadron interactionsAsymmetryComputer Science::Digital Libraries114 Physical sciencesMarie curieCDF Collaborationanti-p p: colliding beamsPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesanti-p p: scatteringmedia_common.cataloged_instanceddc:530High Energy PhysicsEuropean union010306 general physicsScience & Technology1960 GeV-cms010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyTop quarkQ007TFBResearch councilExperimental High Energy PhysicsCDFHigh Energy Physics::Experimentcolliding beams [anti-p p]High Energy Physics Top quark Hadron-hadron interactions Quantum Chromodynamics Particle properties Tevatron ColliderD0 Collaborationexperimental resultsPhysical Review Letters
researchProduct

Volume III. DUNE far detector technical coordination

2020

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…

Technology530 PhysicsPhysics::Instrumentation and Detectorsmedia_common.quotation_subjectContext (language use)01 natural sciences09 Engineering030218 nuclear medicine & medical imagingneutrino03 medical and health sciences0302 clinical medicine0103 physical sciencesGrand Unified TheoryDeep Underground Neutrino ExperimentHigh Energy PhysicsInstruments & InstrumentationNeutrino oscillations liquid Argon TPC technical design report technical coordinationInstrumentationMathematical Physicsmedia_commonScience & Technology02 Physical Sciences010308 nuclear & particles physicsDetectorVolume (computing)530 PhysikNuclear & Particles PhysicsUniverseSystems engineeringHigh Energy Physics::ExperimentState (computer science)NeutrinoLong baseline neutrino experiment CP violationJournal of Instrumentation
researchProduct

Measurement ofbHadron Lifetimes in Exclusive Decays Containing aJ/ψinpp¯Collisions ats=1.96  TeV

2011

We report on a measurement of b-hadron lifetimes in the fully reconstructed decay modes B{sup +}{yields}J/{psi}K{sup +}, B{sup 0}{yields}J/{psi}K{sup *}(892){sup 0}, B{sup 0}{yields}J/{psi}K{sub s}{sup 0}, and {Lambda}{sub b}{sup 0}{yields}J/{psi}{Lambda}{sup 0} using data corresponding to an integrated luminosity of 4.3 fb{sup -1}, collected by the CDF II detector at the Fermilab Tevatron. The measured lifetimes are {tau}(B{sup +})=[1.639{+-}0.009(stat){+-}0.009(syst)] ps, {tau}(B{sup 0})=[1.507{+-}0.010(stat){+-}0.008(syst)] ps, and {tau}({Lambda}{sub b}{sup 0})=[1.537{+-}0.045(stat){+-}0.014(syst)] ps. The lifetime ratios are {tau}(B{sup +})/{tau}(B{sup 0})=[1.088{+-}0.009(stat){+-}0.004…

PhysicsParticle physicsMeson010308 nuclear & particles physicsHadronGeneral Physics and AstronomyElementary particleLambdaQuarkonium01 natural sciences7. Clean energyCrystallography0103 physical sciencesB meson010306 general physicsBosonPhysical Review Letters
researchProduct

Searches for rare or forbidden semileptonic charm decays

2011

We present searches for rare or forbidden charm decays of the form $X_c^+\to h^\pm\ell^\mp\ell^{(\prime)+}$, where $X_c^+$ is a charm hadron ($D^+$, $D^+_s$, or $\Lambda_c^+$), $h^\pm$ is a pion, kaon, or proton, and $\ell^{(\prime)\pm}$ is an electron or muon. The analysis is based on $384 fb^{-1}$ of $e^+e^-$ annihilation data collected at or close to the $\Upsilon(4S)$ resonance with the BaBar detector at the SLAC National Accelerator Laboratory. No significant signal is observed for any of the 35 decay modes that are investigated. We establish 90% confidence-level upper limits on the branching fractions between $1 \times 10^{-6}$ and $44 \times 10^{-6}$ depending on the channel. In most…

Semileptonic decayNuclear and High Energy PhysicsParticle physicsforbiddenMesonElectron–positron annihilationFOS: Physical sciencessemileptonic charm decays01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Particle decayPion0103 physical sciencessemileptonic[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment010306 general physicsPhysicsMuon010308 nuclear & particles physicsBranching fractionParticle physicsBABAR detectorrareHEPcharm decays3. Good healthCharmed baryonsBaBarPACS: 11.30.Fs 11.30.Hv 13.20.Fc 13.30.CeHigh Energy Physics::Experimentrare; forbidden; semileptonic; charm decaysFísica de partículesExperiments
researchProduct

Direct Top-Quark Width Measurement at CDF

2010

7 páginas, 2 figuras, 2 tablas.-- CDF Collaboration: et al.

QuarkTop quarkParticle physicsJet energyAstrophysics::High Energy Astrophysical PhenomenaTevatronGeneral Physics and AstronomyFOS: Physical sciencesElementary particleddc:500.27. Clean energy01 natural sciencesBottom quark114 Physical sciencesHigh Energy Physics - ExperimentStandard ModelHEAVY QUARKS DECAY PHYSICSNuclear physicsPHYSICSHigh Energy Physics - Experiment (hep-ex)In-situ calibrationHeavy quarks0103 physical sciencesHigh energy physics010306 general physicsBosonsBosonPhysicsIntegrated luminosityQuark mass010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyConfidence levelsDecayUpper limitsDecay channelsTevatronThe standard modelFermilabHigh Energy Physics::ExperimentHEAVY QUARKSData sampleHEAVY QUARKS; DECAY; PHYSICSDECAYWidth measurementsColliderLepton
researchProduct

Study of radiative bottomonium transitions using converted photons

2011

We use 111+/-1 million Upsilon(3S) and 89+/-1 million Upsilon(2S) events recorded by the BaBar detector at the PEP-II B-factory at SLAC to perform a study of radiative transitions between bottomonium states using photons that have been converted to e+e- pairs by the detector material. We observe Upsilon(3S) -&gt; gamma chi_b0,2(1P) decay, make precise measurements of the branching fractions for chi_b1,2(1P,2P) -&gt; gamma Upsilon(1S) and chi_b1,2(2P) -&gt; gamma Upsilon(2S) decays, and search for radiative decay to the eta_b(1S) and eta_b(2S) states.

Nuclear and High Energy PhysicsParticle physicsMesonElectron–positron annihilationHadronbottomoniumFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Particle decayBaBar detector at SLAC; radiative bottomonium transitions0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Radiative transfer010306 general physicsPACS: 13.20.Gd 14.40.PqPhysics010308 nuclear & particles physicsBranching fractionParticle physicsQuarkoniumHEPconverted photons3. Good healthbottomonium; converted photonsPair productionradiative bottomonium transitionsBaBarBaBar detector at SLACFísica de partículesExperimentsPhysical Review D
researchProduct

Performance of the upgraded PreProcessor of the ATLAS Level-1 Calorimeter Trigger

2020

The PreProcessor of the ATLAS Level-1 Calorimeter Trigger prepares the analogue trigger signals sent from the ATLAS calorimeters by digitising, synchronising, and calibrating them to reconstruct transverse energy deposits, which are then used in further processing to identify event features. During the first long shutdown of the LHC from 2013 to 2014, the central components of the PreProcessor, the Multichip Modules, were replaced by upgraded versions that feature modern ADC and FPGA technology to ensure optimal performance in the high pile-up environment of LHC Run 2. This paper describes the features of the newMultichip Modules along with the improvements to the signal processing achieved.

Physics - Instrumentation and Detectors:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Computer sciencePhysics::Instrumentation and Detectors01 natural sciencesHigh Energy Physics - Experiment030218 nuclear medicine & medical imaginglaw.inventionSubatomär fysikHigh Energy Physics - Experiment (hep-ex)0302 clinical medicinelawSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PreprocessorDetectors and Experimental Techniquesphysics.ins-detInstrumentationMathematical PhysicsFPGASettore FIS/01Signal processingLarge Hadron ColliderInstrumentation and Detectors (physics.ins-det)trigger [calorimeter]ATLASCalorimeters; Trigger concepts and systems (hardware and software)Calorimetermedicine.anatomical_structure:Nuclear and elementary particle physics: 431 [VDP]Trigger concepts and systems (hardware and software)design [electronics]Particle Physics - ExperimentComputer hardwareperformanceCiências Naturais::Ciências Físicas530 Physics:Ciências Físicas [Ciências Naturais]Analog-to-digital converterFOS: Physical sciences61003 medical and health sciencesCalorimetersAtlas (anatomy)0103 physical sciencesmedicineHigh Energy Physicsddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Field-programmable gate arraysignal processingCalorimeterScience & Technologyhep-ex010308 nuclear & particles physicsbusiness.industrycalorimeter: trigger530 Physikcalibrationanalog-to-digital converterpile-upExperimental High Energy Physicselectronics: readoutbusinessreadout [electronics]Energy (signal processing)electronics: design
researchProduct

Observation and Measurement of Forward Proton Scattering in Association with Lepton Pairs Produced via the Photon Fusion Mechanism at ATLAS

2020

The observation of forward proton scattering in association with lepton pairs (eþe− þ p or μþμ− þ p) produced via photon fusion is presented. The scattered proton is detected by the ATLAS Forward Proton spectrometer, while the leptons are reconstructed by the central ATLAS detector. Proton-proton collision data recorded in 2017 at a center-of-mass energy of ffiffiffi s p ¼ 13 TeV are analyzed, corresponding to an integrated luminosity of 14.6 fb−1. A total of 57 (123) candidates in the ee þ p (μμ þ p) final state are selected, allowing the background-only hypothesis to be rejected with a significance exceeding 5 standard deviations in each channel. Proton-tagging techniques are introduced f…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Photon13000 GeV-cmsLHC ATLASmeasured [channel cross section]General Physics and Astronomy01 natural sciences7. Clean energyHigh Energy Physics - Experimentelectron: pair productionSubatomär fysikHigh Energy Physics - Experiment (hep-ex)Integrated LuminosityFusion Mechanismphoton photon: fusionspectrometer [p]Subatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [p p]pair production [lepton]Electroweak interactionQuantum ChromodynamicsParticle productionNuclear ExperimentSettore FIS/01PhysicsQuantum chromodynamicsObservation and MeasurementQuantum electrodynamicsLarge Hadron Colliderp: spectrometerdimuonAtlas (topology)COLLISIONS; PHYSICS; GAMMA; LIGHT; LHCElectroweak interactionDetectorphotonATLASfusion [photon photon]muon: pair production:Nuclear and elementary particle physics: 431 [VDP]PhotoproductionLIGHTCERN LHC CollATLAS DetectorsLHCcolliding beams [p p]channel cross section: measuredParticle Physics - Experimentsmall-angleParticle physicsp p: scatteringCOLLISIONSp: particle identificationCiências Naturais::Ciências Físicas530 Physicslepton: pair production:Ciências Físicas [Ciências Naturais]Particles & FieldsFOS: Physical sciencesparticle identification [p]LHC ATLAS High Energy PhysicsPHYSICS0103 physical sciencesddc:530Cross-Section Measurementpair production [electron]pair production [muon]High Energy Physics010306 general physicsCiencias ExactasATLAS CollaborationScience & TechnologySpectrometerhep-exPomeronsFísicaGAMMALeptonsProton Scatteringexclusive productionPrecision measurementsProton Proton CollisionsStandard DeviationExperimental High Energy PhysicsElementary Particles and FieldsHigh Energy Physics::ExperimentHadron-hadron collisionsp p: colliding beamsLeptonacceptanceexperimental results
researchProduct

Two-photon widths of the $\chi_{c0, 2}$ states and helicity analysis for $\chi_{c2}\ar\gamma\gamma$}

2012

Based on a data sample of 106 M $\psi^{\prime}$ events collected with the BESIII detector, the decays $\psi^{\prime}\ar\gamma\chi_{c0, 2}$,$\chi_{c0, 2}\ar\gamma\gamma$ are studied to determine the two-photon widths of the $\chi_{c0, 2}$ states. The two-photon decay branching fractions are determined to be ${\cal B}(\chi_{c0}\ar\gamma\gamma) = (2.24\pm 0.19\pm 0.12\pm 0.08)\times 10^{-4}$ and ${\cal B}(\chi_{c2}\ar\gamma\gamma) = (3.21\pm 0.18\pm 0.17\pm 0.13)\times 10^{-4}$. From these, the two-photon widths are determined to be $\Gamma_{\gamma \gamma}(\chi_{c0}) = (2.33\pm0.20\pm0.13\pm0.17)$ keV, $\Gamma_{\gamma \gamma}(\chi_{c2}) = (0.63\pm0.04\pm0.04\pm0.04)$ keV, and $\cal R$ $=\Gamma…

Astrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Physics - Experiment
researchProduct

Taxonomic revision of the Atlantic and Pacific species of Ligophorus (Monogenea, Dactylogyridae) from mullets (Teleostei, Mugilidae) with the proposa…

2013

A revision of the Atlantic and Pacific species of Ligophorus Euzet et Suriano, 1977 based on abundant newly sampled material from mugilids of the Mediterranean Sea, Sea of Japan and South China Sea, as well as available type and voucher specimens, is presented. All 35 nominal species of Ligophorus known from the Atlantic and the Pacific waters are treated. Of them, 30 are considered valid, one incertae sedis (L. leporinus), one species inquirendae (L. chongmingensis), two junior synonyms (L. euzeti and L. gussevi) and one is transferred to another genus. Three new species of Ligophorus are described: L. triangularis, L. miroshnichenki, and L. rectus. An amended diagnosis of Ligophorus is gi…

ParàsitsZoologiaBiologia marina
researchProduct

Evidence for the Direct Two-Photon Transition from $\psi(3686)$ to $J/\psi$

2012

The two-photon transition $\psi(3686)\to\gamma\gamma J/\psi$ is studied in a sample of 106 million $\psi(3686)$ decays collected by the BESIII detector. The branching fraction is measured to be $(3.1\pm0.6(\unit{stat})^{+0.8}_{-1.0}(\unit{syst})) \times10^{-4}$ using $J/\psi\to e^+e^-$ and $J/\psi\to\mu^+\mu^-$ decays, and its upper limit is estimated to be $4.5\times10^{-4}$ at the 90% conference level. This work represents the first measurement of a two-photon transition among charmonium states. The orientation of the $\psi(3686)$ decay plane and the $J/\psi$ polarization in this decay are also studied. In addition, the product branching fractions of sequential $E1$ transitions $\psi(3686…

High Energy Physics - PhenomenologyHigh Energy Physics::ExperimentHigh Energy Physics - Experiment
researchProduct