0000000001239232

AUTHOR

M. Ichikawa

Observation of Coulomb-assisted nuclear bound state of $��^-$-$^{14}$N system

In an emulsion-counter hybrid experiment performed at J-PARC, a $��^-$ absorption event was observed which decayed into twin single-$��$ hypernuclei. Kinematic calculations enabled a unique identification of the reaction process as $��^{-} + ^{14}$N$\ \rightarrow\ ^{10}_��$Be + $^5_��$He. For the binding energy of the $��^{-}$ hyperon in the $��^-$-$^{14}$N system a value of $1.27 \pm 0.21$ MeV was deduced. The energy level of $��^-$ is likely a nuclear $1p$ state which indicates a weak $��N$-$����$ coupling.

research product

Status of J-PARC E07: Systematic study of double strangeness nuclei with hybrid emulsion method

J-PARC E07 is the most complex emulsion experiment to date investigating double hypernuclei with a hybrid emulsion method. This experiment aims to detect 104 Ξ− stop events, ten times more events than the past experiments. Thus, an unequivocal identification of several new double hypernuclei is expected. The beam exposure has been completed at the K1.8 beam line of the J-PARC hadron facility in June 2017. The photographic development of all emulsion sheets has also been completed in February 2018. The emulsion sheets are presently being analyzed with dedicated optical microscopes. Current statistics is comparable to that of E373 and so far 10 events of 3-vertices topology have been detected…

research product

Observation of a Be double-Lambda hypernucleus in the J-PARC E07 experiment

A double-$\Lambda$ hypernucleus, ${}_{\Lambda\Lambda}\mathrm{Be}$, was observed by the J-PARC E07 collaboration in nuclear emulsions tagged by the $(K^{-},K^{+})$ reaction. This event was interpreted as a production and decay of $ {}_{\Lambda\Lambda}^{\;10}\mathrm{Be}$, ${}_{\Lambda\Lambda}^{\;11}\mathrm{Be}$, or ${}_{\Lambda\Lambda}^{\;12}\mathrm{Be}^{*}$ via $\Xi^{-}$ capture in ${}^{16}\mathrm{O}$. By assuming the capture in the atomic 3D state, the binding energy of two $\Lambda$ hyperons$\,$($B_{\Lambda\Lambda}$) of these double-$\Lambda$ hypernuclei are obtained to be $15.05 \pm 0.11\,\mathrm{MeV}$, $19.07 \pm 0.11\,\mathrm{MeV}$, and $13.68 \pm 0.11\,\mathrm{MeV}$, respectively. Base…

research product

Status of the J-PARC E07, Systematic Study of Double Strangeness Nuclei with the Hybrid Emulsion Method

The current status of the J-PARC E07 experiment and two typical events, a _ΛΛBe hypernuclear event named “MINO” and \(_{\Xi }^{15}\text{C}\) hypernuclear event named “IBUKI”, are presented. J-PARC E07 is the most complex emulsion experiment so far to investigate double hypernuclei. The physics run at the K1.8 beam line in the J-PARC hadron facility and photographic development of all emulsion sheets have been completed. The emulsion sheets are presently being analyzed with dedicated optical microscopes. Current statistics are estimated to be about twice that of KEK-PS E373. Quantitative data on ΔB_ΛΛ of double Λ hypernucleus and \(B_{\Xi ^{ - }}\) of Ξ hypernucleus are being accumulated suc…

research product

J-PARC E07: Systematic Study of Double Strangeness System with Hybrid Emulsion Method

research product

OUP accepted manuscript

research product

Observation of Coulomb-Assisted Nuclear Bound State of Ξ−–N14 System

In an emulsion-counter hybrid experiment performed at J-PARC, a Ξ^{-} absorption event was observed which decayed into twin single-Λ hypernuclei. Kinematic calculations enabled a unique identification of the reaction process as Ξ^{-}+^{14}N→_{Λ}^{10}Be+_{Λ}^{5}He. For the binding energy of the Ξ^{-} hyperon in the Ξ^{-}-^{14}N system a value of 1.27±0.21  MeV was deduced. The energy level of Ξ^{-} is likely a nuclear 1p state which indicates a weak ΞN-ΛΛ coupling.

research product

Observation of Coulomb-assisted nuclear bound state of $\Xi^-$-$^{14}$N system

In an emulsion-counter hybrid experiment performed at J-PARC, a $\Xi^-$ absorption event was observed which decayed into twin single-$\Lambda$ hypernuclei. Kinematic calculations enabled a unique identification of the reaction process as $\Xi^{-} + ^{14}$N$\ \rightarrow\ ^{10}_\Lambda$Be + $^5_\Lambda$He. For the binding energy of the $\Xi^{-}$ hyperon in the $\Xi^-$-$^{14}$N system a value of $1.27 \pm 0.21$ MeV was deduced. The energy level of $\Xi^-$ is likely a nuclear $1p$ state which indicates a weak ${\Xi}N$-$\Lambda\Lambda$ coupling.

research product