0000000001239365

AUTHOR

Jenny Renaut

showing 10 related works from this author

Stuck at work? Quantitative proteomics of environmental wine yeast strains reveals the natural mechanism of overcoming stuck fermentation

2015

During fermentation oenological yeast cells are subjected to a number of different stress conditions and must respond rapidly to the continuously changing environment of this harsh ecological niche. In this study we gained more insights into the cell adaptation mechanisms by linking proteome monitoring with knowledge on physiological behaviour of different strains during fermentation under model winemaking conditions. We used 2D-DIGE technology to monitor the proteome evolution of two newly discovered environmental yeast strains Saccharomyces bayanus and triple hybrid Saccharomyces cerevisiae × Saccharomyces kudriavzevii × S. bayanus and compared them to data obtained for the commercially a…

Proteomics0301 basic medicineProteomeSaccharomyces cerevisiaeSaccharomyces bayanusWineSaccharomyces cerevisiaeBiologyBiochemistrySaccharomycesFungal ProteinsTwo-Dimensional Difference Gel ElectrophoresisSaccharomyces03 medical and health sciencesStress PhysiologicalAmino AcidsMolecular BiologyEthanolCell redox homeostasisbiology.organism_classificationYeastStuck fermentationBiosynthetic PathwaysProtein TransportYeast in winemaking030104 developmental biologyBiochemistryFermentationProteolysisGlycolysisOxidation-ReductionSaccharomyces kudriavzeviiPROTEOMICS
researchProduct

The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis

2014

International audience; Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored. In this study, we first examined the qualitative composition of the root membrane proteome of Medicago truncatula after microsome enrichment and subsequent in dep…

[SDV.SA]Life Sciences [q-bio]/Agricultural sciencesGeLC-MS/MS[SDV.BIO]Life Sciences [q-bio]/BiotechnologyProteomeBiophysicsBiological Transport ActiveRoot membrane proteomeBiochemistrySpectral countingFungal ProteinsGlomeromycotaSymbiosisPeriarbuscular membraneMycorrhizaeMedicago truncatulaBotanyEndomembrane systemMycorrhizaArbuscular mycorrhizaRhizophagus irregularisSymbiosisPlant Proteins2. Zero hungerbiologyfungiMembrane Proteins15. Life on landbiology.organism_classificationMedicago truncatulaCell biologyMembrane proteinProteomeSignal Transduction
researchProduct

Protéome membranaire en réponse à la symbiose mycorhizienne à arbuscules par GeLC-MS/MS

2012

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesmycorhize à arbuscule[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologyprotéome membranaire
researchProduct

An Exemplary Model Study for Overcoming Stuck Fermentation during Spontaneous Fermentation with the Aid of a Saccharomyces Triple Hybrid

2015

Sluggish or stuck fermentations cause significant financial losses for winemakers each year. In order to investigate the reasons for problems during spontaneous fermentation of Riesling must in a well-known German vineyard of the lower Moselle, yeast strains involved in must fermentation were identified during winemaking in the two years 2011 and 2012. Identification of the yeast isolates was performed by applying analyses of the ITS-1-5.8-ITS2 region and restriction fragment analyses of different gene sequences. It revealed that Saccharomyces (S.) bayanus and not Saccharomyces cerevisiae was the main fermenting yeast. Either S. bayanus finished the fermentation or led to stuck fermentation…

StarterbiologyStrain (chemistry)BiochemistrySaccharomyces cerevisiaefood and beveragesFermentationbiology.organism_classificationSaccharomycesYeastStuck fermentationWinemakingJournal of Agricultural Science
researchProduct

Label-free 1-DE-LC-MS/MS and iTRAQ-OFFGEL-LC-MS/MS to identify arbuscular mycorrhiza-related membrane proteins.

2011

[SDV] Life Sciences [q-bio]
researchProduct

Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence

2013

'Summary' 26 I. 'Casting for a scenario' 26 II. 'Nominees for a preliminary role' 27 III. 'Nominees for a leading role' 32 IV. 'Future artists' 37   'Acknowledgements' 38   References 38 Summary The roots of most land plants can enter a relationship with soil-borne fungi belonging to the phylum Glomeromycota. This symbiosis with arbuscular mycorrhizal (AM) fungi belongs to the so-called biotrophic interactions, involving the intracellular accommodation of a microorganism by a living plant cell without causing the death of the host. Although profiling technologies have generated an increasing depository of plant and fungal proteins eligible for sustaining AM accommodation and functioning, a …

0106 biological sciencesLASER MICRODISSECTIONPhysiologycarbon (C)phosphorus (P)[SDV]Life Sciences [q-bio]Plant Science01 natural sciencesPlant RootsGlomeromycotaMEDICAGO-TRUNCATULA ROOTSRNA interferenceMycorrhizaeLOTUS-JAPONICUSPlastidsMycorrhizaFUNGUS GLOMUS-INTRARADICESPlant ProteinsGENE-EXPRESSIONGenetics0303 health sciencesGene knockdownFungal proteinPHOSPHATE TRANSPORTERarbuscular mycorrhizaCADMIUM STRESS ALLEVIATIONfood and beveragesSTRIGOLACTONE BIOSYNTHESISArbuscular mycorrhizaEPIDERMAL-CELLSProtein Transportmembranes[SDE]Environmental SciencesSignal TransductionINTRACELLULAR ACCOMMODATIONHyphaeBiologybiotrophyPhosphatesFungal Proteins03 medical and health sciencesSymbiosisBotanyGene silencing[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyGlomeromycotaSymbiosis030304 developmental biologyfungi15. Life on landbiology.organism_classificationCarbonsilencing010606 plant biology & botany
researchProduct

Technical improvements for analysis of récalcitrant proteins by LC-MS

2010

[SDV] Life Sciences [q-bio]
researchProduct

Functional analysis of the membrane proteome of Medicago truncatula roots upon colonization by the arbuscular mycorrhizal fungus Glomus irregulare

2010

International audience

[SDV] Life Sciences [q-bio][SDV]Life Sciences [q-bio]
researchProduct

Vers l'étude quantitative et fonctionnelle des protéomes membranaires des racines mis en jeu au cours de la symbiose mycorhizienne à arbuscules de Me…

2010

[SDV] Life Sciences [q-bio]
researchProduct

Label-free 1-DE-LC-MS/MS to identify arbuscular mycorrhiza-related membrane proteins

2012

Deep changes in the shape and number of organelles, together with profound modifications in various membrane compartments, are induced within arbuscular mycorrhizal (AM) symbiosis. In this context, to investigate the membrane-associated proteins that are regulated in the model interaction Medicago truncatula – Rhizophagus irregularis, label-free 1DE-LC-MS/MS approach has been employed as alternative to two-dimensional gel electrophoresis. The existence of a correlation between protein abundance and peak areas or number of MS/MS spectra has widened the choice of label-free quantitative proteomics. The results highlighted microsomal protein candidates that could be involved in the symbiotic e…

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesroot membrane proteomespectral counting[SDV]Life Sciences [q-bio]fungi[SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologymedicago truncatularhizophagus irregularis
researchProduct