0000000001242089

AUTHOR

Nikita Y. Shmelev

WS2/MoS2 Heterostructures via Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters

The preparation of 2D stacked layers that combine flakes of different nature, gives rise to countless number of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides WS2/MoS2, has awaken great interest due to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationic W3S…

research product

WS 2 /MoS 2 Heterostructures through Thermal Treatment of MoS 2 Layers Electrostatically Functionalized with W 3 S 4 Molecular Clusters

The preparation of 2D stacked layers combining flakes of different nature gives rise to countless numbers of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides, WS2 /MoS2 , has awakened great interest owing to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here, a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationi…

research product

WS 2 /MoS 2 Heterostructures through Thermal Treatment of MoS 2 Layers Electrostatically Functionalized with W 3 S 4 Molecular Clusters

research product

WS2/MoS2 Heterostructures through Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters

The preparation of 2D stacked layers that combine flakes of different nature, gives rise to countless number of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides WS2/MoS2, has awaken great interest due to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationic W3S…

research product