0000000001247005

AUTHOR

Zheng Zhu

showing 7 related works from this author

Singularities in L^p-quasidisks

2021

We study planar domains with exemplary boundary singularities of the form of cusps. A natural question is how much elastic energy is needed to flatten these cusps; that is, to remove singularities. We give, in a connection of quasidisks, a sharp integrability condition for the distortion function to answer this question. peerReviewed

PhysicsCusp (singularity)Distortion functionPure mathematicsquasidiskmappings of integrable distortionElastic energyBoundary (topology)Of the formArticlesCuspquasiconformalConnection (mathematics)funktioteoriaPlanarcuspGravitational singularityAnnales Fennici Mathematici
researchProduct

Product of extension domains is still an extension domain

2018

We prove the product of the Sobolev-extension domains is still a Sobolev-extension domain.

AlgebraMathematics - Functional AnalysisMathematics::Functional AnalysisGeneral MathematicsProduct (mathematics)FOS: MathematicsMathematics::Analysis of PDEsExtension (predicate logic)MathematicsDomain (software engineering)Functional Analysis (math.FA)
researchProduct

Pointwise Inequalities for Sobolev Functions on Outward Cuspidal Domains

2019

Abstract We show that the 1st-order Sobolev spaces $W^{1,p}(\Omega _\psi ),$$1<p\leq \infty ,$ on cuspidal symmetric domains $\Omega _\psi $ can be characterized via pointwise inequalities. In particular, they coincide with the Hajłasz–Sobolev spaces $M^{1,p}(\Omega _\psi )$.

PointwisePure mathematicsMathematics::Functional AnalysisInequalityGeneral Mathematicsmedia_common.quotation_subject010102 general mathematicsMathematics::Analysis of PDEs01 natural sciencesFunctional Analysis (math.FA)Sobolev spaceMathematics - Functional Analysis0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsepäyhtälötfunktionaalianalyysiComputer Science::DatabasesMathematicsmedia_common
researchProduct

Sobolev Extension on Lp-quasidisks

2021

AbstractIn this paper, we study the Sobolev extension property of Lp-quasidisks which are the generalizations of classical quasidisks. After that, we also find some applications of this property.

Pure mathematicsSobolev extension domainsProperty (philosophy)Lp-quasidisksMathematics::Complex Variables010102 general mathematicsMathematics::Analysis of PDEs0102 computer and information sciencesExtension (predicate logic)01 natural sciencesPotential theoryfunktioteoriaSobolev spacehomeomorphism of finite distortion010201 computation theory & mathematics0101 mathematicsfunktionaalianalyysiAnalysisMathematicsPotential Analysis
researchProduct

Bi-Lipschitz invariance of planar BV- and W1,1-extension domains

2021

We prove that a bi-Lipschitz image of a planar $BV$-extension domain is also a $BV$-extension domain, and that a bi-Lipschitz image of a planar $W^{1,1}$-extension domain is again a $W^{1,1}$-extension domain.

Mathematics - Functional AnalysisMathematics - Classical Analysis and ODEsBV-extensionClassical Analysis and ODEs (math.CA)FOS: MathematicsSobolev extension46E35funktionaalianalyysiFunctional Analysis (math.FA)
researchProduct

Pointwise inequalities for Sobolev functions on generalized cuspidal domains

2022

We establish point wise inequalities for Sobolev functions on a wider class of outward cuspidal domains. It is a generalization of an earlier result by the author and his collaborators

Mathematics - Functional Analysiscuspidal domainsFOS: Mathematicspointwise inequalitySobolev functionsAstrophysics::Cosmology and Extragalactic AstrophysicsArticlesepäyhtälötfunktionaalianalyysiFunctional Analysis (math.FA)
researchProduct

Homeomorphisms of finite distortion : from the unit ball to cusp domains in R^{3}

2016

Riemann mapping theoremHomeomorphism of finite distortioncusp domainlocally exponential integrable
researchProduct