6533b851fe1ef96bd12a8e6d
RESEARCH PRODUCT
Pointwise Inequalities for Sobolev Functions on Outward Cuspidal Domains
Zheng ZhuJan MalýPekka KoskelaSylvester Eriksson-biquesubject
PointwisePure mathematicsMathematics::Functional AnalysisInequalityGeneral Mathematicsmedia_common.quotation_subject010102 general mathematicsMathematics::Analysis of PDEs01 natural sciencesFunctional Analysis (math.FA)Sobolev spaceMathematics - Functional Analysis0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsepäyhtälötfunktionaalianalyysiComputer Science::DatabasesMathematicsmedia_commondescription
Abstract We show that the 1st-order Sobolev spaces $W^{1,p}(\Omega _\psi ),$$1<p\leq \infty ,$ on cuspidal symmetric domains $\Omega _\psi $ can be characterized via pointwise inequalities. In particular, they coincide with the Hajłasz–Sobolev spaces $M^{1,p}(\Omega _\psi )$.
year | journal | country | edition | language |
---|---|---|---|---|
2019-12-10 |