0000000000009691
AUTHOR
Pekka Koskela
Fractional integration, differentiation, and weighted Bergman spaces
We study the action of fractional differentiation and integration on weighted Bergman spaces and also the Taylor coeffficients of functions in certain subclasses of these spaces. We then derive several criteria for the multipliers between such spaces, complementing and extending various recent results. Univalent Bergman functions are also considered.
Geometry and analysis of Dirichlet forms
Let $ \mathscr E $ be a regular, strongly local Dirichlet form on $L^2(X, m)$ and $d$ the associated intrinsic distance. Assume that the topology induced by $d$ coincides with the original topology on $ X$, and that $X$ is compact, satisfies a doubling property and supports a weak $(1, 2)$-Poincar\'e inequality. We first discuss the (non-)coincidence of the intrinsic length structure and the gradient structure. Under the further assumption that the Ricci curvature of $X$ is bounded from below in the sense of Lott-Sturm-Villani, the following are shown to be equivalent: (i) the heat flow of $\mathscr E$ gives the unique gradient flow of $\mathscr U_\infty$, (ii) $\mathscr E$ satisfies the Ne…
Accessible parts of boundary for simply connected domains
For a bounded simply connected domain $\Omega\subset\mathbb{R}^2$, any point $z\in\Omega$ and any $0<\alpha<1$, we give a lower bound for the $\alpha$-dimensional Hausdorff content of the set of points in the boundary of $\Omega$ which can be joined to $z$ by a John curve with a suitable John constant depending only on $\alpha$, in terms of the distance of $z$ to $\partial\Omega$. In fact this set in the boundary contains the intersection $\partial\Omega_z\cap\partial\Omega$ of the boundary of a John sub-domain $\Omega_z$ of $\Omega$, centered at $z$, with the boundary of $\Omega$. This may be understood as a quantitative version of a result of Makarov. This estimate is then applied to obta…
Trace Operators on Regular Trees
Abstract We consider different notions of boundary traces for functions in Sobolev spaces defined on regular trees and show that the almost everywhere existence of these traces is independent of the chosen definition of a trace.
Dirichlet Forms, Poincaré Inequalities, and the Sobolev Spaces of Korevaar and Schoen
We answer a question of Jost on the validity of Poincare inequalities for metric space-valued functions in a Dirichlet domain. We also investigate the relationship between Dirichlet domains and the Sobolev-type spaces introduced by Korevaar and Schoen.
Hölder continuity of Sobolev functions and quasiconformal mappings
A Note on Extremal Mappings of Finite Distortion
Orlicz-Hardy inequalities
We relate Orlicz-Hardy inequalities on a bounded Euclidean domain to certain fatness conditions on the complement. In the case of certain log-scale distortions of Ln, this relationship is necessary and sufficient, thus extending results of Ancona, Lewis, and Wannebo. peerReviewed
Sobolev-type spaces from generalized Poincaré inequalities
We de ne a Sobolev space by means of a generalized Poincare inequality and relate it to a corresponding space based on upper gradients. 2000 Mathematics Subject Classi cation: Primary 46E35, Secondary 46E30, 26D10
Weighted pointwise Hardy inequalities
We introduce the concept of a visual boundary of a domain �¶ �¼ Rn and show that the weighted Hardy inequality �¶ |u|pd�¶ �A.p C �¶ |�Þu|pd�¶ �A, where d�¶(x) = dist(x, �Ý�¶), holds for all u �¸ C �� 0 (�¶) with exponents �A < �A0 when the visual boundary of �¶ is sufficiently large. Here �A0 = �A0(p, n, �¶) is explicit, essentially sharp, and may even be greater than p . 1, which is the known bound for smooth domains. For instance, in the case of the usual von Koch snowflake domain the sharp bound is shown to be �A0 = p . 2 + �E, with �E = log 4/ log 3. These results are based on new pointwise Hardy inequalities.
Sobolev homeomorphic extensions onto John domains
Abstract Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the classical Jordan-Schoenflies theorem may admit no solution - it is possible to have a boundary homeomorphism which admits a continuous W 1 , 2 -extension but not even a homeomorphic W 1 , 1 -extension. We prove that if the target is assumed to be a John disk, then any boundary homeomorphism from the unit circle admits a Sobolev homeomorphic extension for all exponents p 2 . John disks, being one sided quasidisks, are of fundamental importance in Geometric Function The…
Mappings of finite distortion: Monotonicity and continuity
We study mappings f = ( f1, ..., fn) : Ω → Rn in the Sobolev space W loc (Ω,R n), where Ω is a connected, open subset of Rn with n ≥ 2. Thus, for almost every x ∈ Ω, we can speak of the linear transformation D f(x) : Rn → Rn, called differential of f at x. Its norm is defined by |D f(x)| = sup{|D f(x)h| : h ∈ Sn−1}. We shall often identify D f(x) with its matrix, and denote by J(x, f ) = det D f(x) the Jacobian determinant. Thus, using the language of differential forms, we can write
Geometric Properties of Planar BV -Extension Domains
We investigate geometric properties of those planar domains that are extension for functions with bounded variation.We start from a characterization of such domains given by Burago–Maz'ya and prove that a bounded, simply connected domain is a BV -extension domain if and only if its com- plement is quasiconvex. We further prove that the extension property is a bi-Lipschitz invariant and give applications to Sobolev extension domains.
Mappings of finite distortion: The zero set of the Jacobian
This paper is part of our program to establish the fundamentals of the theory of mappings of finite distortion [6], [1], [8], [13], [14], [7] which form a natural generalization of the class of mappings of bounded distortion, also called quasiregular mappings. Let us begin with the definition. We assume that Ω ⊂ Rn is a connected open set. We say that a mapping f : Ω → Rn has finite distortion if:
GEOMETRIC FUNCTION THEORY AND NON-LINEAR ANALYSIS (Oxford Mathematical Monographs)
Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings
Abstract In this paper, the authors characterize, in terms of pointwise inequalities, the classical Besov spaces B ˙ p , q s and Triebel–Lizorkin spaces F ˙ p , q s for all s ∈ ( 0 , 1 ) and p , q ∈ ( n / ( n + s ) , ∞ ] , both in R n and in the metric measure spaces enjoying the doubling and reverse doubling properties. Applying this characterization, the authors prove that quasiconformal mappings preserve F ˙ n / s , q s on R n for all s ∈ ( 0 , 1 ) and q ∈ ( n / ( n + s ) , ∞ ] . A metric measure space version of the above morphism property is also established.
MAPPINGS OF FINITE DISTORTION: $L^n \log^{\alpha} L$ -INTEGRABILITY
Recently, systematic studies of mappings of finite distortion have emerged as a key area in geometric function theory. The connection with deformations of elastic bodies and regularity of energy minimizers in the theory of nonlinear elasticity is perhaps a primary motivation for such studies, but there are many other applications as well, particularly in holomorphic dynamics and also in the study of first order degenerate elliptic systems, for instance the Beltrami systems we consider here.
Lectures on quasiconformal and quasisymmetric mappings
An introduction to Cheeger's differentiation theory
Mappings of finite distortion: Removable singularities
We show that certain small sets are removable for bounded mappings of finite distortion for which the distortion function satisfies a suitable subexponential integrability condition. We also give an example demonstrating the sharpness of this condition.
L∞-variational problem associated to dirichlet forms
A quasiconformal composition problem for the Q-spaces
Given a quasiconformal mapping $f:\mathbb R^n\to\mathbb R^n$ with $n\ge2$, we show that (un-)boundedness of the composition operator ${\bf C}_f$ on the spaces $Q_{\alpha}(\mathbb R^n)$ depends on the index $\alpha$ and the degeneracy set of the Jacobian $J_f$. We establish sharp results in terms of the index $\alpha$ and the local/global self-similar Minkowski dimension of the degeneracy set of $J_f$. This gives a solution to [Problem 8.4, 3] and also reveals a completely new phenomenon, which is totally different from the known results for Sobolev, BMO, Triebel-Lizorkin and Besov spaces. Consequently, Tukia-V\"ais\"al\"a's quasiconformal extension $f:\mathbb R^n\to\mathbb R^n$ of an arbitr…
Quasiconformal maps in metric spaces with controlled geometry
This paper develops the foundations of the theory of quasiconformal maps in metric spaces that satisfy certain bounds on their mass and geometry. The principal message is that such a theory is both relevant and viable. The first main issue is the problem of definition, which we next describe. Quasiconformal maps are commonly understood as homeomorphisms that distort the shape of infinitesimal balls by a uniformly bounded amount. This requirement makes sense in every metric space. Given a homeomorphism f from a metric space X to a metric space Y , then for x∈X and r>0 set
Global integrability of the gradients of solutions to partial differential equations
Removable sets for Sobolev spaces
We study removable sets for the Sobolev space W1,p. We show that removability for sets lying in a hyperplane is essentially determined by their thickness measured in terms of a concept of p-porosity.
Uniform continuity of quasiconformal mappings and conformal deformations
We prove that quasiconformal maps onto domains satisfying a suitable growth condition on the quasihyperbolic metric are uniformly continuous even when both domains are equipped with internal metric. The improvement over previous results is that the internal metric can be used also in the image domain. We also extend this result for conformal deformations of the euclidean metric on the unit ball of R n \mathbb {R}^n .
A non-doubling Trudinger inequality
Mappings of Finite Distortion:¶Discreteness and Openness
We establish a sharp integrability condition on the partial derivatives of a mapping with L p -integrable distortion for some p>n− 1 to guarantee discreteness and openness. We also show that a mapping with exponentially integrable distortion and integrable Jacobian determinant is either constant or both discrete and open. We give an example demonstrating the preciseness of our criterion.
Planar Mappings of Finite Distortion
We review recent results on planar mappings of finite distortion. This class of mappings contains all analytic functions and quasiconformal mappings.
Removability theorems for solutions of degenerate elliptic partial differential equations
Exceptional Sets for Quasiconformal Mappings in General Metric Spaces
A theorem of Balogh, Koskela, and Rogovin states that in Ahlfors Q-regular metric spaces which support a p-Poincare inequality, , an exceptional set of -finite (Q−p)- dimensional Hausdorff measure can be taken in the definition of a quasiconformal mapping while retaining Sobolev regularity analogous to that of the Euclidean setting. Through examples, we show that the assumption of a Poincare inequality cannot be removed.
Isoperimetric inequality via Lipschitz regularity of Cheeger-harmonic functions
Abstract Let ( X , d , μ ) be a complete, locally doubling metric measure space that supports a local weak L 2 -Poincare inequality. We show that optimal gradient estimates for Cheeger-harmonic functions imply local isoperimetric inequalities.
Lattice property of $p$-admissible weights
Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces
Abstract We use the heat equation to establish the Lipschitz continuity of Cheeger-harmonic functions in certain metric spaces. The metric spaces under consideration are those that are endowed with a doubling measure supporting a (1,2)-Poincare inequality and in addition supporting a corresponding Sobolev–Poincare-type inequality for the modification of the measure obtained via the heat kernel. Examples are given to illustrate the necessity of our assumptions on these spaces. We also provide an example to show that in the general setting the best possible regularity for the Cheeger-harmonic functions is Lipschitz continuity.
On functions with derivatives in a Lorentz space
We establish a sharp integrability condition on the partial derivatives of a Sobolev mapping to guarantee that sets of measure zero get mapped to sets of measure zero. This condition is sharp also for continuity and differentiability almost everywhere.
Volume growth and parabolicity
Sharpness of uniform continuity of quasiconformal mappings onto s-John domains
We construct examples to show the sharpness of uniform continuity of quasiconformal mappings onto $s$-John domains. Our examples also give a negative answer to a prediction in [7].
Composition of quasiconformal mappings and functions in Triebel-Lizorkin spaces
Let α > 0 and p ∈ [1, ∞) satisfy αp ≤ n. Suppose that f: Rn Rn is a K-quasiconformal mapping and let u ∈ Wα, p(Rn) have compact support. We find an optimal value of β = β(α, K, n) such that u○f ∈ Wβ, p(Rn). We also give an answer to the analogous problem where we moreover assume that u is bounded.
Geometry and analysis of Dirichlet forms (II)
Abstract Given a regular, strongly local Dirichlet form E , under assumption that the lower bound of the Ricci curvature of Bakry–Emery, the local doubling and local Poincare inequalities are satisfied, we obtain that: (i) the intrinsic differential and distance structures of E coincide; (ii) the Cheeger energy functional Ch d E is a quadratic norm. This shows that (ii) is necessary for the Riemannian Ricci curvature defined by Ambrosio–Gigli–Savare to be bounded from below. This together with some recent results of Ambrosio–Gigli–Savare yields that the heat flow gives a gradient flow of Boltzman–Shannon entropy under the above assumptions. We also obtain an improvement on Kuwada's duality …
Images and Preimages of Null Sets
In this chapter we study conditions that guarantee that our mapping maps sets of measure zero to sets of measure zero. We start with the problem in general Sobolev spaces, after which we establish a better result for mappings of finite distortion. Then we introduce a natural class of counterexamples to statements of this type and finally we give a weak condition under which the preimage of a set of measure zero has measure zero for mappings of finite distortion.
Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees
In this paper, we study function spaces defined via dyadic energies on the boundaries of regular trees. We show that correct choices of dyadic energies result in Besov-type spaces that are trace spaces of (weighted) first order Sobolev spaces.
Poincaré inequalities and Steiner symmetrization
A complete geometric characterization for a general Steiner symmetric domain Ω ⊂ Rn to satisfy the Poincare inequality with exponent p > n−1 is obtained and it is shown that this range of exponents is best possible. In the case where the Steiner symmetric domain is determined by revolving the graph of a Lipschitz continuous function, it is shown that the preceding characterization works for all p > 1 and furthermore for such domains a geometric characterization for a more general Sobolev–Poincare inequality to hold is given. Although the operation of Steiner symmetrization need not always preserve a Poincare inequality, a general class of domains is given for which Poincare inequalities are…
Sobolev embeddings, extensions and measure density condition
AbstractThere are two main results in the paper. In the first one, Theorem 1, we prove that if the Sobolev embedding theorem holds in Ω, in any of all the possible cases, then Ω satisfies the measure density condition. The second main result, Theorem 5, provides several characterizations of the Wm,p-extension domains for 1<p<∞. As a corollary we prove that the property of being a W1,p-extension domain, 1<p⩽∞, is invariant under bi-Lipschitz mappings, Theorem 8.
Radial growth of solutions to the poisson equation
We establish a radial growth estimate of the type of the iterated law of the logarithm for solutions to the Poisson equation in the unit ball.
Openness and Discreteness
The aim of this chapter is to study conditions under which a mapping of finite distortion is open (maps open sets to open sets) and discrete (preimage of each point is a discrete set).
Sharp inequalities via truncation
Abstract We show that Sobolev–Poincare and Trudinger inequalities improve to inequalities on Lorentz-type scales provided they are stable under truncations.
Homeomorphisms of Finite Distortion
In this chapter we establish the optimal regularity of the inverse mapping in higher dimensions and optimal Sobolev regularity for composites. Moreover, we establish optimal moduli of continuity for mappings in our classes and we discuss orientation preservation and approximation of Sobolev homeomorphisms.
Trace and density results on regular trees
We give characterizations for the existence of traces for first order Sobolev spaces defined on regular trees.
Bounded compositions on scaling invariant Besov spaces
For $0 < s < 1 < q < \infty$, we characterize the homeomorphisms $��: \real^n \to \real^n$ for which the composition operator $f \mapsto f \circ ��$ is bounded on the homogeneous, scaling invariant Besov space $\dot{B}^s_{n/s,q}(\real^n)$, where the emphasis is on the case $q\not=n/s$, left open in the previous literature. We also establish an analogous result for Besov-type function spaces on a wide class of metric measure spaces as well, and make some new remarks considering the scaling invariant Triebel-Lizorkin spaces $\dot{F}^s_{n/s,q}(\real^n)$ with $0 < s < 1$ and $0 < q \leq \infty$.
On Limits at Infinity of Weighted Sobolev Functions
We study necessary and sufficient conditions for a Muckenhoupt weight $w \in L^1_{\mathrm{loc}}(\mathbb R^d)$ that yield almost sure existence of radial, and vertical, limits at infinity for Sobolev functions $u \in W^{1,p}_{\mathrm{loc}}(\mathbb R^d,w)$ with a $p$-integrable gradient $|\nabla u|\in L^p(\mathbb R^d,w)$. The question is shown to subtly depend on the sense in which the limit is taken. First, we fully characterize the existence of radial limits. Second, we give essentially sharp sufficient conditions for the existence of vertical limits. In the specific setting of product and radial weights, we give if and only if statements. These generalize and give new proofs for results of…
Traces of weighted function spaces: dyadic norms and Whitney extensions
The trace spaces of Sobolev spaces and related fractional smoothness spaces have been an active area of research since the work of Nikolskii, Aronszajn, Slobodetskii, Babich and Gagliardo among others in the 1950's. In this paper we review the literature concerning such results for a variety of weighted smoothness spaces. For this purpose, we present a characterization of the trace spaces (of fractional order of smoothness), based on integral averages on dyadic cubes, which is well adapted to extending functions using the Whitney extension operator.
Old and New on the Quasihyperbolic Metric
Let D be a proper subdomain of \( {\mathbb{R}^d}\). Following Gehring and Palka [GP] we define the quasihyperbolic distance between a pair x 1, x 2 of points in D as the infimum of \( {\smallint _\gamma }\frac{{ds}}{{D\left( {x,\partial D} \right)}}\) over all rectifiable curves γ joining x 1, x 2 in D. We denote the quasihyperbolic distance between x 1, x 2 by k D (x 1, x 2). As pointed out by Gehring and Osgood [GO], x 1 and x 2 can be joined by a quasihyperbolic geodesic; also see [Mr]. The quasihyperbolic metric is comparable to the usual hyperbolic metric in a simply connected plane domain by the Koebe distortion theorem. For a multiply connected plane domain D these two metrics are co…
Dimension gap under Sobolev mappings
Abstract We prove an essentially sharp estimate in terms of generalized Hausdorff measures for the images of boundaries of Holder domains under continuous Sobolev mappings, satisfying suitable Orlicz–Sobolev conditions. This estimate marks a dimension gap, which was first observed in [2] for conformal mappings.
Regularity of the Inverse of a Sobolev Homeomorphism
We give necessary and sufficient conditions for the inverse ofa Sobolev homeomorphism to be a Sobolev homeomorphism and conditions under which the inverse is of bounded variation.
Hardy’s inequality and the boundary size
We establish a self-improving property of the Hardy inequality and an estimate on the size of the boundary of a domain supporting a Hardy inequality.
Weighted Hardy Spaces of Quasiconformal Mappings
We establish a weighted version of the $H^p$-theory of quasiconformal mappings.
Regularity of the inverse of a Sobolev homeomorphism in space
Let Ω ⊂ Rn be open. Given a homeomorphism of finite distortion with |Df| in the Lorentz space Ln−1, 1 (Ω), we show that and f−1 has finite distortion. A class of counterexamples demonstrating sharpness of the results is constructed.
Mappings of finite distortion: Sharp Orlicz-conditions
We establish continuity, openness and discreteness, and the condition $(N)$ for mappings of finite distortion under minimal integrability assumptions on the distortion.
Product of extension domains is still an extension domain
We prove the product of the Sobolev-extension domains is still a Sobolev-extension domain.
Mappings of finite distortion: discreteness and openness for quasi-light mappings
Abstract Let f ∈ W 1 , n ( Ω , R n ) be a continuous mapping so that the components of the preimage of each y ∈ R n are compact. We show that f is open and discrete if | D f ( x ) | n ⩽ K ( x ) J f ( x ) a.e. where K ( x ) ⩾ 1 and K n − 1 / Φ ( log ( e + K ) ) ∈ L 1 ( Ω ) for a function Φ that satisfies ∫ 1 ∞ 1 / Φ ( t ) d t = ∞ and some technical conditions. This divergence condition on Φ is shown to be sharp.
Sobolev Spaces and Quasiconformal Mappings on Metric Spaces
Heinonen and I have recently established a theory of quasiconformal mappings on Ahlfors regular Loewner spaces. These spaces are metric spaces that have sufficiently many rectifiable curves in a sense of good estimates on moduli of curve families. The Loewner condition can be conveniently described in terms of Poincare inequalities for pairs of functions and upper gradients. Here an upper gradient plays the role that the length of the gradient of a smooth function has in the Euclidean setting. For example, the Euclidean spaces and Heisenberg groups and the more general Carnot groups admit the type of a Poincare inequality we need. We describe the basics and discuss the associated Sobolev sp…
Controlled diffeomorphic extension of homeomorphisms
Let $\Omega$ be an internal chord-arc Jordan domain and $\varphi:\mathbb S\rightarrow\partial\Omega$ be a homeomorphism. We show that $\varphi$ has finite dyadic energy if and only if $\varphi$ has a diffeomorphic extension $h: \mathbb D\rightarrow \Omega$ which has finite energy.
Regularity and modulus of continuity of space-filling curves
We study critical regularity assumptions on space-filling curves that possess certain modulus of continuity. The bounds we obtain are essentially sharp, as demonstrated by an example. peerReviewed
Interpolation properties of Besov spaces defined on metric spaces
Let X = (X, d, μ)be a doubling metric measure space. For 0 < α < 1, 1 ≤p, q < ∞, we define semi-norms When q = ∞ the usual change from integral to supremum is made in the definition. The Besov space Bp, qα (X) is the set of those functions f in Llocp(X) for which the semi-norm ‖f ‖ is finite. We will show that if a doubling metric measure space (X, d, μ) supports a (1, p)-Poincare inequality, then the Besov space Bp, qα (X) coincides with the real interpolation space (Lp (X), KS1, p(X))α, q, where KS1, p(X) is the Sobolev space defined by Korevaar and Schoen [15]. This results in (sharp) imbedding theorems. We further show that our definition of a Besov space is equivalent with the definiti…
A note to “Mappings of finite distortion: formation of cusps II”
We consider planar homeomorphisms f : R 2 → R 2 f\colon \mathbb {R}^2\to \mathbb {R}^2 that are of finite distortion and map the unit disk onto a specific cusp domain Ω s \Omega _s . We study the relation between the degree s s of the cusp and the integrability of the distortion function K f K_f by sharpening a previous result where K f K_f is assumed to be locally exponentially integrable.
Boundary blow-up under Sobolev mappings
We prove that for mappings $W^{1,n}(B^n, \R^n),$ continuous up to the boundary, with modulus of continuity satisfying certain divergence condition, the image of the boundary of the unit ball has zero $n$-Hausdorff measure. For H\"older continuous mappings we also prove an essentially sharp generalized Hausdorff dimension estimate.
Pointwise Inequalities for Sobolev Functions on Outward Cuspidal Domains
Abstract We show that the 1st-order Sobolev spaces $W^{1,p}(\Omega _\psi ),$$1&lt;p\leq \infty ,$ on cuspidal symmetric domains $\Omega _\psi $ can be characterized via pointwise inequalities. In particular, they coincide with the Hajłasz–Sobolev spaces $M^{1,p}(\Omega _\psi )$.
Uniform, Sobolev extension and quasiconformal circle domains
This paper contributes to the theory of uniform domains and Sobolev extension domains. We present new features of these domains and exhibit numerous relations among them. We examine two types of Sobolev extension domains, demonstrate their equivalence for bounded domains and generalize known sufficient geometric conditions for them. We observe that in the plane essentially all of these domains possess the trait that there is a quasiconformal self-homeomorphism of the extended plane which maps a given domain conformally onto a circle domain. We establish a geometric condition enjoyed by these plane domains which characterizes them among all quasicircle domains having no large and no small bo…
Solvability of the divergence equation implies John via Poincaré inequality
Abstract Let Ω ⊂ R 2 be a bounded simply connected domain. We show that, for a fixed (every) p ∈ ( 1 , ∞ ) , the divergence equation div v = f is solvable in W 0 1 , p ( Ω ) 2 for every f ∈ L 0 p ( Ω ) , if and only if Ω is a John domain, if and only if the weighted Poincare inequality ∫ Ω | u ( x ) − u Ω | q d x ≤ C ∫ Ω | ∇ u ( x ) | q dist ( x , ∂ Ω ) q d x holds for some (every) q ∈ [ 1 , ∞ ) . This gives a positive answer to a question raised by Russ (2013) in the case of bounded simply connected domains. In higher dimensions similar results are proved under some additional assumptions on the domain in question.
Quasihyperbolic boundary conditions and capacity: Hölder continuity of quasiconformal mappings
We prove that quasiconformal maps onto domains which satisfy a suitable growth condition on the quasihyperbolic metric are uniformly continuous when the source domain is equipped with the internal metric. The obtained modulus of continuity and the growth assumption on the quasihyperbolic metric are shown to be essentially sharp. As a tool, we prove a new capacity estimate.
Mappings of finite distortion: The sharp modulus of continuity
We establish an essentially sharp modulus of continuity for mappings of subexponentially integrable distortion.
Conformal Metrics on the Unit Ball in Euclidean Space
Mappings of finite distortion : gauge dimension of generalized quasi-circles
We determine the correct dimension gauge for measuring generalized quasicircles (the images of a circle under so-called µ-homeomorphisms). We establish a sharp modulus of continuity estimate for the inverse of a homeomorphism with finite exponentially integrable distortion. We exhibit several illustrative examples. peerReviewed
Sobolev-Poincaré implies John
We establish necessary conditions for the validity of Sobolev-Poincaré type inequalities. We give a geometric characterisation for the validity of this inequality for simply connected plane domains.
Gromov–Hausdorff convergence and Poincaré inequalities
Mappings of finite distortion: Capacity and modulus inequalities
We establish capacity and modulus inequalities for mappings of finite distortion under minimal regularity assumptions.
A characterization of Hajłasz–Sobolev and Triebel–Lizorkin spaces via grand Littlewood–Paley functions
Abstract In this paper, we establish the equivalence between the Hajlasz–Sobolev spaces or classical Triebel–Lizorkin spaces and a class of grand Triebel–Lizorkin spaces on Euclidean spaces and also on metric spaces that are both doubling and reverse doubling. In particular, when p ∈ ( n / ( n + 1 ) , ∞ ) , we give a new characterization of the Hajlasz–Sobolev spaces M ˙ 1 , p ( R n ) via a grand Littlewood–Paley function.
Gradient estimates for heat kernels and harmonic functions
Let $(X,d,\mu)$ be a doubling metric measure space endowed with a Dirichlet form $\E$ deriving from a "carr\'e du champ". Assume that $(X,d,\mu,\E)$ supports a scale-invariant $L^2$-Poincar\'e inequality. In this article, we study the following properties of harmonic functions, heat kernels and Riesz transforms for $p\in (2,\infty]$: (i) $(G_p)$: $L^p$-estimate for the gradient of the associated heat semigroup; (ii) $(RH_p)$: $L^p$-reverse H\"older inequality for the gradients of harmonic functions; (iii) $(R_p)$: $L^p$-boundedness of the Riesz transform ($p<\infty$); (iv) $(GBE)$: a generalised Bakry-\'Emery condition. We show that, for $p\in (2,\infty)$, (i), (ii) (iii) are equivalent, wh…
On the fusion problem for degenerate elliptic equations
Let F be a relatively closed subset of a Euclidean domain Ω. We investigate when solutions u to certain elliptic equations on Ω/F are restrictions of solutions on all of Ω. Specifically, we show that if ∂F is not too large, and u has a suitable decay rate near F, then u can be so extended.
Mappings of finite distortion: Reverse inequalities for the Jacobian
Let f be a nonconstant mapping of finite distortion. We establish integrability results on 1/Jf by studying weights that satisfy a weak reverse Holder inequality where the associated constant can depend on the ball in question. Here Jf is the Jacobian determinant of f.
Mappings ofBMO-distortion and beltrami-type operators
Mappings of finite distortion: the degree of regularity
This paper investigates the self-improving integrability properties of the so-called mappings of finite distortion. Let K(x)⩾1 be a measurable function defined on a domain Ω⊂Rn,n⩾2, and such that exp(βK(x))∈Lloc1(Ω), β>0. We show that there exist two universal constants c1(n),c2(n) with the following property: Let f be a mapping in Wloc1,1(Ω,Rn) with |Df(x)|n⩽K(x)J(x,f) for a.e. x∈Ω and such that the Jacobian determinant J(x,f) is locally in L1log−c1(n)βL. Then automatically J(x,f) is locally in L1logc2(n)βL(Ω). This result constitutes the appropriate analog for the self-improving regularity of quasiregular mappings and clarifies many other interesting properties of mappings of finite disto…
Generalized John disks
Abstract We establish the basic properties of the class of generalized simply connected John domains.
Sobolev homeomorphic extensions onto John domains
Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the classical Jordan-Schoenflies theorem may admit no solution - it is possible to have a boundary homeomorphism which admits a continuous $W^{1,2}$-extension but not even a homeomorphic $W^{1,1}$-extension. We prove that if the target is assumed to be a John disk, then any boundary homeomorphism from the unit circle admits a Sobolev homeomorphic extension for all exponents $p<2$. John disks, being one sided quasidisks, are of fundamental importance in Geometric Function Theory.
Quasiconformal mappings and global integrability of the derivative
Approximation and quasicontinuity of Besov and Triebel–Lizorkin functions
We show that, for $0<s<1$, $0<p<\infty$, $0<q<\infty$, Haj\l asz-Besov and Haj\l asz-Triebel-Lizorkin functions can be approximated in the norm by discrete median convolutions. This allows us to show that, for these functions, the limit of medians, \[ \lim_{r\to 0}m_u^\gamma(B(x,r))=u^*(x), \] exists quasieverywhere and defines a quasicontinuous representative of $u$. The above limit exists quasieverywhere also for Haj\l asz functions $u\in M^{s,p}$, $0<s\le 1$, $0<p<\infty$, but approximation of $u$ in $M^{s,p}$ by discrete (median) convolutions is not in general possible.
Quasihyperbolic boundary conditions and capacity: Uniform continuity of quasiconformal mappings
We prove that quasiconformal maps onto domains which satisfy a suitable growth condition on the quasihyperbolic metric are uniformly continuous when the source domain is equipped with the internal metric. The obtained modulus of continuity and the growth assumption on the quasihyperbolic metric are shown to be essentially sharp. As a tool, we prove a new capacity estimate.
Errata to: Exceptional Sets for Quasiconformal Mappings in General Metric Spaces
Isoperimetric inequality from the poisson equation via curvature
In this paper, we establish an isoperimetric inequality in a metric measure space via the Poisson equation. Let (X,d,μ) be a complete, pathwise connected metric space with locally Ahlfors Q-regular measure, where Q > 1, that supports a local L2-Poincare inequality. We show that, for the Poisson equation Δu = g, if the local L∞-norm of the gradient Du can be bounded by the Lorentz norm LQ,1 of g, then we obtain an isoperimetric inequality and a Sobolev inequality in (X,d,μ) with optimal exponents. By assuming a suitable curvature lower bound, we establish such optimal bounds on . © 2011 Wiley Periodicals, Inc.
Morrey–Sobolev Extension Domains
We show that every uniform domain of R n with n ≥ 2 is a Morrey-Sobolev W 1, p-extension domain for all p ∈ [1, n), and moreover, that this result is essentially best possible for each p ∈ [1, n) in the sense that, given a simply connected planar domain or a domain of R n with n ≥ 3 that is quasiconformal equivalent to a uniform domain, if it is a W 1, p-extension domain, then it must be uniform. peerReviewed
Integrability of J f and 1∕J f
In this chapter we study the optimal degree of integrability of J f and 1∕J f for mappings of finite distortion. As an application of our estimates we show that some sets are removable singularities for mappings with exponentially integrable distortion.
A density problem for Sobolev spaces on Gromov hyperbolic domains
We prove that for a bounded domain $\Omega\subset \mathbb R^n$ which is Gromov hyperbolic with respect to the quasihyperbolic metric, especially when $\Omega$ is a finitely connected planar domain, the Sobolev space $W^{1,\,\infty}(\Omega)$ is dense in $W^{1,\,p}(\Omega)$ for any $1\le p<\infty$. Moreover if $\Omega$ is also Jordan or quasiconvex, then $C^{\infty}(\mathbb R^n)$ is dense in $W^{1,\,p}(\Omega)$ for $1\le p<\infty$.
Generalized dimension distortion under planar Sobolev homeomorphisms
We prove essentially sharp dimension distortion estimates for planar Sobolev-Orlicz homeomorphisms.
Dimension gap under conformal mappings
Abstract We give an estimate for the Hausdorff gauge dimension of the boundary of a simply connected planar domain under p -integrability of the hyperbolic metric, p > 1 . This estimate does not degenerate when p tends to one; for p = 1 the boundary can even have positive area. The same phenomenon is extended to general planar domains in terms of the quasihyperbolic metric. We also give an example which shows that our estimates are essentially sharp.
Intrinsic Hardy–Orlicz spaces of conformal mappings
We define a new type of Hardy-Orlicz spaces of conformal mappings on the unit disk where in place of the value |f(x)| we consider the intrinsic path distance between f(x) and f(0) in the image domain. We show that if the Orlicz function is doubling then these two spaces are actually the same, and we give an example when the intrinsic Hardy-Orlicz space is strictly smaller.
Other definitions of Sobolev-type spaces
Nonexistence of Quasiconformal Maps Between Certain Metric Measure Spaces
We provide new conditions that ensure that two metric measure spaces are not quasiconformally equivalent. As an application, we deduce that there exists no quasiconformal map between the sub-Riemannian Heisenberg and roto-translation groups.
Mappings of finite distortion: decay of the Jacobian in the plane
Sobolev classes of Banach space-valued functions and quasiconformal mappings
We give a definition for the class of Sobolev functions from a metric measure space into a Banach space. We give various characterizations of Sobolev classes and study the absolute continuity in measure of Sobolev mappings in the “borderline case”. We show under rather weak assumptions on the source space that quasisymmetric homeomorphisms belong to a Sobolev space of borderline degree; in particular, they are absolutely continuous. This leads to an analytic characterization of quasiconformal mappings between Ahlfors regular Loewner spaces akin to the classical Euclidean situation. As a consequence, we deduce that quasisymmetric maps respect the Cheeger differentials of Lipschitz functions …
Boundary behavior of quasi-regular maps and the isodiametric profile
We study obstructions for a quasi-regular mapping f : M → N f:M\rightarrow N of finite degree between Riemannian manifolds to blow up on or collapse on a non-trivial part of the boundary of M M .
Pointwise characterizations of Hardy-Sobolev functions
We establish simple pointwise characterizations of functions in the Hardy-Sobolev spaces within the range n/(n+1)<p <=1. In addition, classical Hardy inequalities are extended to the case p <= 1.
Extensions and Imbeddings
AbstractWe establish a connection between the Sobolev imbedding theorem and the extendability of Sobolev functions. As applications we give geometric criteria for extendability and give a result on the dependence of the extension property on the exponentp.
Quasihyperbolic boundary conditions and Poincaré domains
We prove that a domain in ${\Bbb R}^n$ whose quasihyperbolic metric satisfies a logarithmic growth condition with coefficient $\beta\le 1$ is a (q,p)-\Poincare domain for all p and q satisfying $p\in[1,\infty)\cap(n-n\beta,n)$ and $q\in[p,\beta p^*)$ , where $p^*=np/(n-p)$ denotes the Sobolev conjugate exponent. An elementary example shows that the given ranges for p and q are sharp. The proof makes use of estimates for a variational capacity. When p=2 we give an application to the solvability of the Neumann problem on domains with irregular boundaries. We also discuss the relationship between this growth condition on the quasihyperbolic metric and the s-John condition.
Generalized dimension estimates for images of porous sets under monotone Sobolev mappings
We give an essentially sharp estimate in terms of generalized Hausdorff measures for images of porous sets under monotone Sobolev mappings, satisfying suitable Orlicz-Sobolev conditions.
Homeomorphisms of finite distortion: discrete length of radial images
AbstractWe study homeomorphisms of finite exponentially integrable distortion of the unit ball Bn onto a domain Ω of finite volume. We show that under such a mapping the images of almost all radii (in terms of a gauge dimension) have finite discrete length. We also show that our dimension estimate is essentially sharp.
Gromov hyperbolicity and quasihyperbolic geodesics
We characterize Gromov hyperbolicity of the quasihyperbolic metric space (\Omega,k) by geometric properties of the Ahlfors regular length metric measure space (\Omega,d,\mu). The characterizing properties are called the Gehring--Hayman condition and the ball--separation condition. peerReviewed