6533b82afe1ef96bd128c49e
RESEARCH PRODUCT
Sobolev embeddings, extensions and measure density condition
Pekka KoskelaHeli TuominenPiotr Hajłaszsubject
Discrete mathematicsExtension operator010102 general mathematicsEberlein–Šmulian theoremMeasure density condition01 natural sciencesSobolev embeddingSobolev inequality010101 applied mathematicsSobolev spaceCorollarySobolev spaces0101 mathematicsInvariant (mathematics)AnalysisEdge-of-the-wedge theoremSobolev spaces for planar domainsMathematicsTrace operatordescription
AbstractThere are two main results in the paper. In the first one, Theorem 1, we prove that if the Sobolev embedding theorem holds in Ω, in any of all the possible cases, then Ω satisfies the measure density condition. The second main result, Theorem 5, provides several characterizations of the Wm,p-extension domains for 1<p<∞. As a corollary we prove that the property of being a W1,p-extension domain, 1<p⩽∞, is invariant under bi-Lipschitz mappings, Theorem 8.
year | journal | country | edition | language |
---|---|---|---|---|
2008-03-01 | Journal of Functional Analysis |