6533b859fe1ef96bd12b7917
RESEARCH PRODUCT
Gradient estimates for heat kernels and harmonic functions
Pekka KoskelaThierry CoulhonAdam SikoraRenjin Jiangsubject
Mathematics - Differential GeometryPure mathematicsPoincaré inequality01 natural sciencesMeasure (mathematics)Sobolev inequalitydifferentiaaligeometriaRiesz transformsymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryLi-Yau estimates0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematicsRiesz transformosittaisdifferentiaaliyhtälötSemigroupDirichlet form010102 general mathematicsMetric Geometry (math.MG)harmoninen analyysiheat kernelsDifferential Geometry (math.DG)Harmonic functionMathematics - Classical Analysis and ODEssymbolspotentiaaliteoria010307 mathematical physicsIsoperimetric inequalityharmonic functionsAnalysisAnalysis of PDEs (math.AP)description
Let $(X,d,\mu)$ be a doubling metric measure space endowed with a Dirichlet form $\E$ deriving from a "carr\'e du champ". Assume that $(X,d,\mu,\E)$ supports a scale-invariant $L^2$-Poincar\'e inequality. In this article, we study the following properties of harmonic functions, heat kernels and Riesz transforms for $p\in (2,\infty]$: (i) $(G_p)$: $L^p$-estimate for the gradient of the associated heat semigroup; (ii) $(RH_p)$: $L^p$-reverse H\"older inequality for the gradients of harmonic functions; (iii) $(R_p)$: $L^p$-boundedness of the Riesz transform ($p<\infty$); (iv) $(GBE)$: a generalised Bakry-\'Emery condition. We show that, for $p\in (2,\infty)$, (i), (ii) (iii) are equivalent, while for $p=\infty$, (i), (ii), (iv) are equivalent. Moreover, some of these equivalences still hold under weaker conditions than the $L^2$-Poincar\'e inequality. Our result gives a characterisation of Li-Yau's gradient estimate of heat kernels for $p=\infty$, while for $p\in (2,\infty)$ it is a substantial improvement as well as a generalisation of earlier results by Auscher-Coulhon-Duong-Hofmann [7] and Auscher-Coulhon [6]. Applications to isoperimetric inequalities and Sobolev inequalities are given. Our results apply to Riemannian and sub-Riemannian manifolds as well as to non-smooth spaces, and to degenerate elliptic/parabolic equations in these settings.
year | journal | country | edition | language |
---|---|---|---|---|
2020-05-01 | Journal of Functional Analysis |