0000000000077080

AUTHOR

Renjin Jiang

Cheeger-harmonic functions in metric measure spaces revisited

Let $(X,d,\mu)$ be a complete metric measure space, with $\mu$ a locally doubling measure, that supports a local weak $L^2$-Poincar\'e inequality. By assuming a heat semigroup type curvature condition, we prove that Cheeger-harmonic functions are Lipschitz continuous on $(X,d,\mu)$. Gradient estimates for Cheeger-harmonic functions and solutions to a class of non-linear Poisson type equations are presented.

research product

Cheeger-harmonic functions in metric measure spaces revisited

Abstract Let ( X , d , μ ) be a complete metric measure space, with μ a locally doubling measure, that supports a local weak L 2 -Poincare inequality. By assuming a heat semigroup type curvature condition, we prove that Cheeger-harmonic functions are Lipschitz continuous on ( X , d , μ ) . Gradient estimates for Cheeger-harmonic functions and solutions to a class of non-linear Poisson type equations are presented.

research product

Korn inequality on irregular domains

Abstract In this paper, we study the weighted Korn inequality on some irregular domains, e.g., s-John domains and domains satisfying quasihyperbolic boundary conditions. Examples regarding sharpness of the Korn inequality on these domains are presented. Moreover, we show that Korn inequalities imply certain Poincare inequality.

research product

Isoperimetric inequality via Lipschitz regularity of Cheeger-harmonic functions

Abstract Let ( X , d , μ ) be a complete, locally doubling metric measure space that supports a local weak L 2 -Poincare inequality. We show that optimal gradient estimates for Cheeger-harmonic functions imply local isoperimetric inequalities.

research product

Solvability of the divergence equation implies John via Poincaré inequality

Abstract Let Ω ⊂ R 2 be a bounded simply connected domain. We show that, for a fixed (every) p ∈ ( 1 , ∞ ) , the divergence equation div v = f is solvable in W 0 1 , p ( Ω ) 2 for every f ∈ L 0 p ( Ω ) , if and only if Ω is a John domain, if and only if the weighted Poincare inequality ∫ Ω | u ( x ) − u Ω | q d x ≤ C ∫ Ω | ∇ u ( x ) | q  dist  ( x , ∂ Ω ) q d x holds for some (every) q ∈ [ 1 , ∞ ) . This gives a positive answer to a question raised by Russ (2013) in the case of bounded simply connected domains. In higher dimensions similar results are proved under some additional assumptions on the domain in question.

research product

Gradient estimates for heat kernels and harmonic functions

Let $(X,d,\mu)$ be a doubling metric measure space endowed with a Dirichlet form $\E$ deriving from a "carr\'e du champ". Assume that $(X,d,\mu,\E)$ supports a scale-invariant $L^2$-Poincar\'e inequality. In this article, we study the following properties of harmonic functions, heat kernels and Riesz transforms for $p\in (2,\infty]$: (i) $(G_p)$: $L^p$-estimate for the gradient of the associated heat semigroup; (ii) $(RH_p)$: $L^p$-reverse H\"older inequality for the gradients of harmonic functions; (iii) $(R_p)$: $L^p$-boundedness of the Riesz transform ($p<\infty$); (iv) $(GBE)$: a generalised Bakry-\'Emery condition. We show that, for $p\in (2,\infty)$, (i), (ii) (iii) are equivalent, wh…

research product

New Orlicz-Hardy Spaces Associated with Divergence Form Elliptic Operators

Let $L$ be the divergence form elliptic operator with complex bounded measurable coefficients, $\omega$ the positive concave function on $(0,\infty)$ of strictly critical lower type $p_\oz\in (0, 1]$ and $\rho(t)={t^{-1}}/\omega^{-1}(t^{-1})$ for $t\in (0,\infty).$ In this paper, the authors study the Orlicz-Hardy space $H_{\omega,L}({\mathbb R}^n)$ and its dual space $\mathrm{BMO}_{\rho,L^\ast}({\mathbb R}^n)$, where $L^\ast$ denotes the adjoint operator of $L$ in $L^2({\mathbb R}^n)$. Several characterizations of $H_{\omega,L}({\mathbb R}^n)$, including the molecular characterization, the Lusin-area function characterization and the maximal function characterization, are established. The …

research product

Isoperimetric inequality from the poisson equation via curvature

In this paper, we establish an isoperimetric inequality in a metric measure space via the Poisson equation. Let (X,d,μ) be a complete, pathwise connected metric space with locally Ahlfors Q-regular measure, where Q > 1, that supports a local L2-Poincare inequality. We show that, for the Poisson equation Δu = g, if the local L∞-norm of the gradient Du can be bounded by the Lorentz norm LQ,1 of g, then we obtain an isoperimetric inequality and a Sobolev inequality in (X,d,μ) with optimal exponents. By assuming a suitable curvature lower bound, we establish such optimal bounds on . © 2011 Wiley Periodicals, Inc.

research product

Gradient Estimate for Solutions to Poisson Equations in Metric Measure Spaces

Let $(X,d)$ be a complete, pathwise connected metric measure space with locally Ahlfors $Q$-regular measure $\mu$, where $Q>1$. Suppose that $(X,d,\mu)$ supports a (local) $(1,2)$-Poincar\'e inequality and a suitable curvature lower bound. For the Poisson equation $\Delta u=f$ on $(X,d,\mu)$, Moser-Trudinger and Sobolev inequalities are established for the gradient of $u$. The local H\"older continuity with optimal exponent of solutions is obtained.

research product