6533b852fe1ef96bd12ab688
RESEARCH PRODUCT
Solvability of the divergence equation implies John via Poincaré inequality
Renjin JiangAapo KauranenPekka Koskelasubject
symbols.namesakePure mathematicsApplied MathematicsBounded functionDomain (ring theory)Simply connected spaceta111symbolsPoincaré inequalityDivergence (statistics)AnalysisMathematicsdescription
Abstract Let Ω ⊂ R 2 be a bounded simply connected domain. We show that, for a fixed (every) p ∈ ( 1 , ∞ ) , the divergence equation div v = f is solvable in W 0 1 , p ( Ω ) 2 for every f ∈ L 0 p ( Ω ) , if and only if Ω is a John domain, if and only if the weighted Poincare inequality ∫ Ω | u ( x ) − u Ω | q d x ≤ C ∫ Ω | ∇ u ( x ) | q dist ( x , ∂ Ω ) q d x holds for some (every) q ∈ [ 1 , ∞ ) . This gives a positive answer to a question raised by Russ (2013) in the case of bounded simply connected domains. In higher dimensions similar results are proved under some additional assumptions on the domain in question.
year | journal | country | edition | language |
---|---|---|---|---|
2014-05-01 | Nonlinear Analysis, Theory, Methods and Applications |