6533b7dbfe1ef96bd12709da

RESEARCH PRODUCT

A quasiconformal composition problem for the Q-spaces

Yi Ru-ya ZhangYuan ZhouPekka KoskelaJie Xiao

subject

Quasiconformal mappingComposition operatorApplied MathematicsGeneral Mathematics010102 general mathematicsta111compositionsMinkowski–Bouligand dimensionComposition (combinatorics)01 natural sciencesQ-spacesFunctional Analysis (math.FA)010101 applied mathematicsCombinatoricsSobolev spaceMathematics - Functional Analysisquasiconformal mappingsFOS: Mathematics42B35 46E30 47B38 30H250101 mathematicsInvariant (mathematics)Degeneracy (mathematics)Mathematics

description

Given a quasiconformal mapping $f:\mathbb R^n\to\mathbb R^n$ with $n\ge2$, we show that (un-)boundedness of the composition operator ${\bf C}_f$ on the spaces $Q_{\alpha}(\mathbb R^n)$ depends on the index $\alpha$ and the degeneracy set of the Jacobian $J_f$. We establish sharp results in terms of the index $\alpha$ and the local/global self-similar Minkowski dimension of the degeneracy set of $J_f$. This gives a solution to [Problem 8.4, 3] and also reveals a completely new phenomenon, which is totally different from the known results for Sobolev, BMO, Triebel-Lizorkin and Besov spaces. Consequently, Tukia-V\"ais\"al\"a's quasiconformal extension $f:\mathbb R^n\to\mathbb R^n$ of an arbitrary quasisymmetric mapping $g:\mathbb R^{n-p}\to \mathbb R^{n-p}$ is shown to preserve $Q_{\alpha} (\mathbb R^n)$ for any $(\alpha,p)\in (0,1)\times[2,n)\cup(0,1/2)\times\{1\}$. Moreover, $Q_{\alpha}(\mathbb R^n)$ is shown to be invariant under inversions for all $0<\alpha<1$.

http://arxiv.org/abs/1608.02009