0000000000124360

AUTHOR

Yuan Zhou

showing 13 related works from this author

Geometry and analysis of Dirichlet forms

2012

Let $ \mathscr E $ be a regular, strongly local Dirichlet form on $L^2(X, m)$ and $d$ the associated intrinsic distance. Assume that the topology induced by $d$ coincides with the original topology on $ X$, and that $X$ is compact, satisfies a doubling property and supports a weak $(1, 2)$-Poincar\'e inequality. We first discuss the (non-)coincidence of the intrinsic length structure and the gradient structure. Under the further assumption that the Ricci curvature of $X$ is bounded from below in the sense of Lott-Sturm-Villani, the following are shown to be equivalent: (i) the heat flow of $\mathscr E$ gives the unique gradient flow of $\mathscr U_\infty$, (ii) $\mathscr E$ satisfies the Ne…

Mathematics(all)General MathematicsPoincaré inequalityMetric measure space01 natural sciencesMeasure (mathematics)Length structuresymbols.namesakeMathematics - Metric GeometrySierpinski gasketGradient flowClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsRicci curvatureHeat kernelMathematicsDirichlet formProbability (math.PR)010102 general mathematicsMathematical analysista111Differential structureMetric Geometry (math.MG)Functional Analysis (math.FA)Sierpinski triangleMathematics - Functional Analysis010101 applied mathematicsRicci curvatureMathematics - Classical Analysis and ODEsPoincaré inequalityBounded functionsymbolsBalanced flowDirichlet formIntrinsic distanceMathematics - ProbabilityAdvances in Mathematics
researchProduct

Radial Maximal Function Characterizations of Hardy Spaces on RD-Spaces and Their Applications

2009

Let ${\mathcal X}$ be an RD-space with $\mu({\mathcal X})=\infty$, which means that ${\mathcal X}$ is a space of homogeneous type in the sense of Coifman and Weiss and its measure has the reverse doubling property. In this paper, we characterize the atomic Hardy spaces $H^p_{\rm at}(\{\mathcal X})$ of Coifman and Weiss for $p\in(n/(n+1),1]$ via the radial maximal function, where $n$ is the "dimension" of ${\mathcal X}$, and the range of index $p$ is the best possible. This completely answers the question proposed by Ronald R. Coifman and Guido Weiss in 1977 in this setting, and improves on a deep result of Uchiyama in 1980 on an Ahlfors 1-regular space and a recent result of Loukas Grafakos…

Mathematics - Functional AnalysisMathematics - Classical Analysis and ODEsMathematics::Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: Mathematics42B30 (Primary) 42B25 (Secondary) 42B35Functional Analysis (math.FA)
researchProduct

Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings

2011

Abstract In this paper, the authors characterize, in terms of pointwise inequalities, the classical Besov spaces B ˙ p , q s and Triebel–Lizorkin spaces F ˙ p , q s for all s ∈ ( 0 , 1 ) and p , q ∈ ( n / ( n + s ) , ∞ ] , both in R n and in the metric measure spaces enjoying the doubling and reverse doubling properties. Applying this characterization, the authors prove that quasiconformal mappings preserve F ˙ n / s , q s on R n for all s ∈ ( 0 , 1 ) and q ∈ ( n / ( n + s ) , ∞ ] . A metric measure space version of the above morphism property is also established.

Mathematics(all)Quasiconformal mappingPure mathematicsGeneral MathematicsGrand Besov spaceMetric measure spaceTriebel–Lizorkin spaceCharacterization (mathematics)Space (mathematics)Triebel–Lizorkin space01 natural sciencesMeasure (mathematics)Quasisymmetric mappingMorphism0101 mathematicsBesov spaceHajłasz–Besov spaceMathematicsPointwiseta111010102 general mathematicsGrand Triebel–Lizorkin spaceQuasiconformal mappingHajłasz–Triebel–Lizorkin space010101 applied mathematicsBesov spaceFractional Hajłasz gradientAdvances in Mathematics
researchProduct

L∞-variational problem associated to dirichlet forms

2012

Pure mathematicsDirichlet formGeneral MathematicsMathematical analysisDirichlet L-functionDirichlet's energyClass number formulaDirichlet distributionsymbols.namesakeGeneralized Dirichlet distributionDirichlet's principlesymbolsDirichlet seriesMathematics
researchProduct

A quasiconformal composition problem for the Q-spaces

2017

Given a quasiconformal mapping $f:\mathbb R^n\to\mathbb R^n$ with $n\ge2$, we show that (un-)boundedness of the composition operator ${\bf C}_f$ on the spaces $Q_{\alpha}(\mathbb R^n)$ depends on the index $\alpha$ and the degeneracy set of the Jacobian $J_f$. We establish sharp results in terms of the index $\alpha$ and the local/global self-similar Minkowski dimension of the degeneracy set of $J_f$. This gives a solution to [Problem 8.4, 3] and also reveals a completely new phenomenon, which is totally different from the known results for Sobolev, BMO, Triebel-Lizorkin and Besov spaces. Consequently, Tukia-V\"ais\"al\"a's quasiconformal extension $f:\mathbb R^n\to\mathbb R^n$ of an arbitr…

Quasiconformal mappingComposition operatorApplied MathematicsGeneral Mathematics010102 general mathematicsta111compositionsMinkowski–Bouligand dimensionComposition (combinatorics)01 natural sciencesQ-spacesFunctional Analysis (math.FA)010101 applied mathematicsCombinatoricsSobolev spaceMathematics - Functional Analysisquasiconformal mappingsFOS: Mathematics42B35 46E30 47B38 30H250101 mathematicsInvariant (mathematics)Degeneracy (mathematics)Mathematics
researchProduct

Hajłasz–Sobolev imbedding and extension

2011

Abstract The author establishes some geometric criteria for a Hajlasz–Sobolev M ˙ ball s , p -extension (resp. M ˙ ball s , p -imbedding) domain of R n with n ⩾ 2 , s ∈ ( 0 , 1 ] and p ∈ [ n / s , ∞ ] (resp. p ∈ ( n / s , ∞ ] ). In particular, the author proves that a bounded finitely connected planar domain Ω is a weak α -cigar domain with α ∈ ( 0 , 1 ) if and only if F ˙ p , ∞ s ( R 2 ) | Ω = M ˙ ball s , p ( Ω ) for some/all s ∈ [ α , 1 ) and p = ( 2 − α ) / ( s − α ) , where F ˙ p , ∞ s ( R 2 ) | Ω denotes the restriction of the Triebel–Lizorkin space F ˙ p , ∞ s ( R 2 ) on Ω .

Hajłasz–Sobolev extensionHajłasz–Sobolev imbeddingApplied Mathematics010102 general mathematicsTriebel–Lizorkin spaceTriebel–Lizorkin space01 natural sciencesSobolev spaceCombinatoricsHajłasz–Sobolev spaceUniform domainBounded function0103 physical sciencesWeak cigar domain010307 mathematical physicsBall (mathematics)Local linear connectivity0101 mathematicsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

CYP3 phylogenomics: evidence for positive selection of CYP3A4 and CYP3A7.

2008

CYP3A metabolizes 50% of currently prescribed drugs and is frequently involved in clinically relevant drug interactions. The understanding of roles and regulations of the individual CYP3A genes in pharmacology and physiology is incomplete.Using genomic sequences from 16 species we investigated the evolution of CYP3 genomic loci over a period of 450 million years.CYP3A genes in amniota evolved from two ancestral CYP3A genes. Upon the emergence of eutherian mammals, one of them was lost, whereas, the other acquired a novel genomic environment owing to translocation. In primates, CYP3A underwent rapid evolutionary changes involving multiple gene duplications, deletions, pseudogenizations, and …

DrugDNA Complementarymedia_common.quotation_subjectMolecular Sequence DataGenomicsBiologyCatalysisCytochrome P-450 Enzyme SystemSpecies SpecificityPhylogenomicsSequence Homology Nucleic AcidGeneticsAnimalsHumansGeneral Pharmacology Toxicology and PharmaceuticsMolecular BiologyGeneGenetics (clinical)CYP3A7media_commonComparative genomicsGeneticsCYP3A4Base SequenceGenomicsIsoenzymesMolecular MedicinePharmacogeneticsPharmacogenetics and genomics
researchProduct

A Rademacher type theorem for Hamiltonians H(x, p) and an application to absolute minimizers

2023

AbstractWe establish a Rademacher type theorem involving Hamiltonians H(x, p) under very weak conditions in both of Euclidean and Carnot-Carathéodory spaces. In particular, H(x, p) is assumed to be only measurable in the variable x, and to be quasiconvex and lower-semicontinuous in the variable p. Without the lower-semicontinuity in the variable p, we provide a counter example showing the failure of such a Rademacher type theorem. Moreover, by applying such a Rademacher type theorem we build up an existence result of absolute minimizers for the corresponding $$L^\infty $$ L ∞ -functional. These improve or extend several known results in the literature.

osittaisdifferentiaaliyhtälötApplied MathematicsvariaatiolaskentaAnalysis
researchProduct

Geometry and analysis of Dirichlet forms (II)

2014

Abstract Given a regular, strongly local Dirichlet form E , under assumption that the lower bound of the Ricci curvature of Bakry–Emery, the local doubling and local Poincare inequalities are satisfied, we obtain that: (i) the intrinsic differential and distance structures of E coincide; (ii) the Cheeger energy functional Ch d E is a quadratic norm. This shows that (ii) is necessary for the Riemannian Ricci curvature defined by Ambrosio–Gigli–Savare to be bounded from below. This together with some recent results of Ambrosio–Gigli–Savare yields that the heat flow gives a gradient flow of Boltzman–Shannon entropy under the above assumptions. We also obtain an improvement on Kuwada's duality …

Dirichlet formta111Mathematical analysisGeometryCurvatureUpper and lower boundsDirichlet distributionsymbols.namesakeBounded functionsymbolsMathematics::Metric GeometryMathematics::Differential GeometryAnalysisRicci curvatureEnergy functionalScalar curvatureMathematicsJournal of Functional Analysis
researchProduct

The $Q_{ \alpha}$-restriction problem

2019

CombinatoricsApplied MathematicsGeneral MathematicsAlpha (ethology)MathematicsAsian Journal of Mathematics
researchProduct

Everywhere differentiability of viscosity solutions to a class of Aronsson's equations

2017

For any open set $\Omega\subset\mathbb R^n$ and $n\ge 2$, we establish everywhere differentiability of viscosity solutions to the Aronsson equation $$ =0 \quad \rm in\ \ \Omega, $$ where $H$ is given by $$H(x,\,p)==\sum_{i,\,j=1}^na^{ij}(x)p_i p_j,\ x\in\Omega, \ p\in\mathbb R^n, $$ and $A=(a^{ij}(x))\in C^{1,1}(\bar\Omega,\mathbb R^{n\times n})$ is uniformly elliptic. This extends an earlier theorem by Evans and Smart \cite{es11a} on infinity harmonic functions.

Lebesgue integration01 natural scienceseverywhere differentiabilityMatrix (mathematics)symbols.namesakeMathematics - Analysis of PDEsL∞-variational problemFOS: MathematicsPoint (geometry)Differentiable function0101 mathematicsAronsson's equationCoefficient matrixMathematical PhysicsMathematicsabsolute minimizerApplied Mathematics010102 general mathematicsMathematical analysista111Riemannian manifold010101 applied mathematicsHarmonic functionMetric (mathematics)symbolsAnalysisAnalysis of PDEs (math.AP)
researchProduct

A characterization of Hajłasz–Sobolev and Triebel–Lizorkin spaces via grand Littlewood–Paley functions

2010

Abstract In this paper, we establish the equivalence between the Hajlasz–Sobolev spaces or classical Triebel–Lizorkin spaces and a class of grand Triebel–Lizorkin spaces on Euclidean spaces and also on metric spaces that are both doubling and reverse doubling. In particular, when p ∈ ( n / ( n + 1 ) , ∞ ) , we give a new characterization of the Hajlasz–Sobolev spaces M ˙ 1 , p ( R n ) via a grand Littlewood–Paley function.

Calderón reproducing formulaMathematics::Functional AnalysisPure mathematicsTopological tensor product010102 general mathematicsMathematical analysisMathematics::Classical Analysis and ODEsTriebel–Lizorkin spaceTriebel–Lizorkin space01 natural sciences010101 applied mathematicsUniform continuityFréchet spaceSobolev spacesInterpolation spaceBesov spaceBirnbaum–Orlicz space0101 mathematicsLp spaceAnalysisMathematicsJournal of Functional Analysis
researchProduct

Morrey–Sobolev Extension Domains

2017

We show that every uniform domain of R n with n ≥ 2 is a Morrey-Sobolev W 1, p-extension domain for all p ∈ [1, n), and moreover, that this result is essentially best possible for each p ∈ [1, n) in the sense that, given a simply connected planar domain or a domain of R n with n ≥ 3 that is quasiconformal equivalent to a uniform domain, if it is a W 1, p-extension domain, then it must be uniform. peerReviewed

Morrey–Sobolev spaceextensionsuniform domain
researchProduct