6533b838fe1ef96bd12a4ff7

RESEARCH PRODUCT

Controlled diffeomorphic extension of homeomorphisms

Zhuang WangHaiqing XuPekka Koskela

subject

Mathematics::Functional AnalysisPure mathematicsMathematics::Dynamical SystemsMathematics - Complex VariablesdiffeomorphismApplied Mathematicsta111010102 general mathematicsHigh Energy Physics::PhenomenologyPoisson extensionExtension (predicate logic)01 natural sciencesHomeomorphismfunktioteoria010101 applied mathematicsDomain (ring theory)chord-arc curveFOS: MathematicsDiffeomorphismtopologia0101 mathematicsComplex Variables (math.CV)AnalysisEnergy (signal processing)Mathematics

description

Let $\Omega$ be an internal chord-arc Jordan domain and $\varphi:\mathbb S\rightarrow\partial\Omega$ be a homeomorphism. We show that $\varphi$ has finite dyadic energy if and only if $\varphi$ has a diffeomorphic extension $h: \mathbb D\rightarrow \Omega$ which has finite energy.

https://dx.doi.org/10.48550/arxiv.1805.02906