6533b838fe1ef96bd12a4ff7
RESEARCH PRODUCT
Controlled diffeomorphic extension of homeomorphisms
Zhuang WangHaiqing XuPekka Koskelasubject
Mathematics::Functional AnalysisPure mathematicsMathematics::Dynamical SystemsMathematics - Complex VariablesdiffeomorphismApplied Mathematicsta111010102 general mathematicsHigh Energy Physics::PhenomenologyPoisson extensionExtension (predicate logic)01 natural sciencesHomeomorphismfunktioteoria010101 applied mathematicsDomain (ring theory)chord-arc curveFOS: MathematicsDiffeomorphismtopologia0101 mathematicsComplex Variables (math.CV)AnalysisEnergy (signal processing)Mathematicsdescription
Let $\Omega$ be an internal chord-arc Jordan domain and $\varphi:\mathbb S\rightarrow\partial\Omega$ be a homeomorphism. We show that $\varphi$ has finite dyadic energy if and only if $\varphi$ has a diffeomorphic extension $h: \mathbb D\rightarrow \Omega$ which has finite energy.
year | journal | country | edition | language |
---|---|---|---|---|
2018-05-08 |