6533b863fe1ef96bd12c78c2
RESEARCH PRODUCT
Nonexistence of Quasiconformal Maps Between Certain Metric Measure Spaces
Pekka KoskelaKatrin FässlerEnrico Le Donnesubject
Mathematics - Differential Geometrymetric measure spacesPure mathematicsMathematics::Dynamical SystemsMathematics::Complex VariablesGeneral MathematicsExistential quantificationta111010102 general mathematicsMetric Geometry (math.MG)01 natural sciencesMeasure (mathematics)quasiconformal equivalenceDifferential Geometry (math.DG)Mathematics - Metric Geometryquasiconformal mappingsMathematics - Classical Analysis and ODEs0103 physical sciencesMetric (mathematics)Classical Analysis and ODEs (math.CA)FOS: MathematicsMathematics (all)010307 mathematical physics0101 mathematicsMathematicsdescription
We provide new conditions that ensure that two metric measure spaces are not quasiconformally equivalent. As an application, we deduce that there exists no quasiconformal map between the sub-Riemannian Heisenberg and roto-translation groups.
year | journal | country | edition | language |
---|---|---|---|---|
2013-12-04 | International Mathematics Research Notices |