6533b7d7fe1ef96bd1268d0f
RESEARCH PRODUCT
Mappings of finite distortion: Monotonicity and continuity
Pekka KoskelaJani OnninenTadeusz Iwaniecsubject
Sobolev spaceDiscrete mathematicsLinear mapsymbols.namesakeDifferential formGeneral MathematicsNorm (mathematics)Jacobian matrix and determinantsymbolsMonotonic functionMathematicsdescription
We study mappings f = ( f1, ..., fn) : Ω → Rn in the Sobolev space W loc (Ω,R n), where Ω is a connected, open subset of Rn with n ≥ 2. Thus, for almost every x ∈ Ω, we can speak of the linear transformation D f(x) : Rn → Rn, called differential of f at x. Its norm is defined by |D f(x)| = sup{|D f(x)h| : h ∈ Sn−1}. We shall often identify D f(x) with its matrix, and denote by J(x, f ) = det D f(x) the Jacobian determinant. Thus, using the language of differential forms, we can write
year | journal | country | edition | language |
---|---|---|---|---|
2001-06-01 | Inventiones Mathematicae |