0000000000009693
AUTHOR
Jani Onninen
Singularities in L^p-quasidisks
We study planar domains with exemplary boundary singularities of the form of cusps. A natural question is how much elastic energy is needed to flatten these cusps; that is, to remove singularities. We give, in a connection of quasidisks, a sharp integrability condition for the distortion function to answer this question. peerReviewed
Mappings of Lp-integrable distortion: regularity of the inverse
Let be an open set in ℝn and suppose that is a Sobolev homeomorphism. We study the regularity of f–1 under the Lp-integrability assumption on the distortion function Kf. First, if is the unit ball and p > n – 1, then the optimal local modulus of continuity of f–1 is attained by a radially symmetric mapping. We show that this is not the case when p ⩽ n – 1 and n ⩾ 3, and answer a question raised by S. Hencl and P. Koskela. Second, we obtain the optimal integrability results for ∣Df–1∣ in terms of the Lp-integrability assumptions of Kf.
Radó–Kneser–Choquet theorem
We present a new approach to the celebrated theorem of Rado–Kneser–Choquet (RKC) on univalence of planar harmonic mappings. The novelty lies in establishing a continuous path (isotopy) from the given harmonic map to a conformal one. Along this path the mappings retain positive Jacobian determinant by virtue of so-called Minimum Principle. These ideas extend to nonlinear uncoupled systems of partial differential equations, as in Iwaniec, Koski and Onninen [‘Isotropic p-harmonic systems in 2D, Jacobian estimates and univalent solutions’, Rev. Mat. Iberoam, to appear]. Unfortunately, details of such digression would lead us too far afield. Nonetheless, one gains (in particular) the RKC-Theorem…
Isotropic p-harmonic systems in 2D Jacobian estimates and univalent solutions
The core result of this paper is an inequality (rather tricky) for the Jacobian determinant of solutions of nonlinear elliptic systems in the plane. The model case is the isotropic (rotationally invariant) p-harmonic system ...
A Note on Extremal Mappings of Finite Distortion
Sobolev homeomorphic extensions onto John domains
Abstract Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the classical Jordan-Schoenflies theorem may admit no solution - it is possible to have a boundary homeomorphism which admits a continuous W 1 , 2 -extension but not even a homeomorphic W 1 , 1 -extension. We prove that if the target is assumed to be a John disk, then any boundary homeomorphism from the unit circle admits a Sobolev homeomorphic extension for all exponents p 2 . John disks, being one sided quasidisks, are of fundamental importance in Geometric Function The…
Mappings of finite distortion: Monotonicity and continuity
We study mappings f = ( f1, ..., fn) : Ω → Rn in the Sobolev space W loc (Ω,R n), where Ω is a connected, open subset of Rn with n ≥ 2. Thus, for almost every x ∈ Ω, we can speak of the linear transformation D f(x) : Rn → Rn, called differential of f at x. Its norm is defined by |D f(x)| = sup{|D f(x)h| : h ∈ Sn−1}. We shall often identify D f(x) with its matrix, and denote by J(x, f ) = det D f(x) the Jacobian determinant. Thus, using the language of differential forms, we can write
Radó-Kneser-Choquet Theorem for simply connected domains (p-harmonic setting)
A remarkable result known as Rad´o-Kneser-Choquet theorem asserts that the harmonic extension of a homeomorphism of the boundary of a Jordan domain ⌦ ⇢ R2 onto the boundary of a convex domain Q ⇢ R2 takes ⌦ di↵eomorphically onto Q . Numerous extensions of this result for linear and nonlinear elliptic PDEs are known, but only when ⌦ is a Jordan domain or, if not, under additional assumptions on the boundary map. On the other hand, the newly developed theory of Sobolev mappings between Euclidean domains and Riemannian manifolds demands to extend this theorem to the setting on simply connected domains. This is the primary goal of our article. The class of the p -harmonic equations is wide enou…
${\cal H}^1$ -estimates of Jacobians by subdeterminants
Let $f:\Omega \rightarrow{\Bbb R}^n$ be a mapping in the Sobolev space $W^{1,n-1}_{loc}(\Omega,{\Bbb R}^n), n\geq 2$ . We assume that the cofactors of the differential matrix Df(x) belong to $L^\frac{n}{n-1}(\Omega)$ . Then, among other things, we prove that the Jacobian determinant detDf lies in the Hardy space ${\cal H}^1(\Omega)$ .
Sobolev homeomorphic extensions
Let $\mathbb X$ and $\mathbb Y$ be $\ell$-connected Jordan domains, $\ell \in \mathbb N$, with rectifiable boundaries in the complex plane. We prove that any boundary homeomorphism $\varphi \colon \partial \mathbb X \to \partial \mathbb Y$ admits a Sobolev homeomorphic extension $h \colon \overline{\mathbb X} \to \overline{\mathbb Y}$ in $W^{1,1} (\mathbb X, \mathbb C)$. If instead $\mathbb X$ has $s$-hyperbolic growth with $s>p-1$, we show the existence of such an extension lies in the Sobolev class $W^{1,p} (\mathbb X, \mathbb C)$ for $p\in (1,2)$. Our examples show that the assumptions of rectifiable boundary and hyperbolic growth cannot be relaxed. We also consider the existence of $W^{…
Radial symmetry of p-harmonic minimizers
"It is still not known if the radial cavitating minimizers obtained by Ball [J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Phil. Trans. R. Soc. Lond. A 306 (1982) 557--611] (and subsequently by many others) are global minimizers of any physically reasonable nonlinearly elastic energy". The quotation is from [J. Sivaloganathan and S. J. Spector, Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity, Ann. Inst. H. Poincare Anal. Non Lineaire 25 (2008), no. 1, 201--213] and seems to be still accurate. The model case of the $p$-harmonic energy is considered here. We prove that the planar radial minimizers are indee…
Sharp inequalities via truncation
Abstract We show that Sobolev–Poincare and Trudinger inequalities improve to inequalities on Lorentz-type scales provided they are stable under truncations.
The Nitsche phenomenon for weighted Dirichlet energy
Abstract The present paper arose from recent studies of energy-minimal deformations of planar domains. We are concerned with the Dirichlet energy. In general the minimal mappings need not be homeomorphisms. In fact, a part of the domain near its boundary may collapse into the boundary of the target domain. In mathematical models of nonlinear elasticity this is interpreted as interpenetration of matter. We call such occurrence the Nitsche phenomenon, after Nitsche’s remarkable conjecture (now a theorem) about existence of harmonic homeomorphisms between annuli. Indeed the round annuli proved to be perfect choices to grasp the nuances of the problem. Several papers are devoted to a study of d…
Continuity of solutions of linear, degenerate elliptic equations
We consider the simplest form of a second order, linear, degenerate, divergence structure equation in the plane. Under an integrability condition on the degenerate function, we prove that the solutions are continuous.
Mappings of finite distortion: Sharp Orlicz-conditions
We establish continuity, openness and discreteness, and the condition $(N)$ for mappings of finite distortion under minimal integrability assumptions on the distortion.
A note on mappings of finite distortion: The sharp modulus of continuity
Bing meets Sobolev
We show that, for each $1\le p < 2$, there exists a wild involution $\mathbb S^3\to \mathbb S^3$ in the Sobolev class $W^{1,p}(\mathbb S^3,\mathbb S^3)$.
Limits of Sobolev homeomorphisms
Let X; Y subset of R-2 be topologically equivalent bounded Lipschitz domains. We prove that weak and strong limits of homeomorphisms h: X (onto)-> Y in the Sobolev space W-1,W-p (X, R-2), p >= 2; are the same. As an application, we establish the existence of 2D-traction free minimal deformations for fairly general energy integrals. Peer reviewed
Quasihyperbolic boundary conditions and capacity: Hölder continuity of quasiconformal mappings
We prove that quasiconformal maps onto domains which satisfy a suitable growth condition on the quasihyperbolic metric are uniformly continuous when the source domain is equipped with the internal metric. The obtained modulus of continuity and the growth assumption on the quasihyperbolic metric are shown to be essentially sharp. As a tool, we prove a new capacity estimate.
Mappings of finite distortion: The sharp modulus of continuity
We establish an essentially sharp modulus of continuity for mappings of subexponentially integrable distortion.
A note on the isoperimetric inequality
We show that the sharp integral form on the isoperimetric inequality holds for those orientation-preserving mappings f ∈ W l o c n 2 n + 1 ( Ω , R n ) f\in W^\frac {n^2}{n+1}_{loc}(\Omega , \mathbb {R}^n) whose Jacobians obey the rule of integration by parts.
Mappings of finite distortion: Capacity and modulus inequalities
We establish capacity and modulus inequalities for mappings of finite distortion under minimal regularity assumptions.
Mappings of L p -integrable distortion: regularity of the inverse
Let X be an open set in R n and suppose that f : X → R n is a Sobolev homeomorphism. We study the regularity of f −1 under the L p -integrability assumption on the distortion function Kf . First, if X is the unit ball and p > n−1, then the optimal local modulus of continuity of f −1 is attained by a radially symmetric mapping. We show that this is not the case when p 6 n − 1 and n > 3, and answer a question raised by S. Hencl and P. Koskela. Second, we obtain the optimal integrability results for |Df −1 | in terms of the L p -integrability assumptions of Kf . peerReviewed
Sobolev homeomorphic extensions onto John domains
Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the classical Jordan-Schoenflies theorem may admit no solution - it is possible to have a boundary homeomorphism which admits a continuous $W^{1,2}$-extension but not even a homeomorphic $W^{1,1}$-extension. We prove that if the target is assumed to be a John disk, then any boundary homeomorphism from the unit circle admits a Sobolev homeomorphic extension for all exponents $p<2$. John disks, being one sided quasidisks, are of fundamental importance in Geometric Function Theory.
Invertibility of Sobolev mappings under minimal hypotheses
Abstract We prove a version of the Inverse Function Theorem for continuous weakly differentiable mappings. Namely, a nonconstant W 1 , n mapping is a local homeomorphism if it has integrable inner distortion function and satisfies a certain differential inclusion. The integrability assumption is shown to be optimal.
Mappings of finite distortion: a new proof for discreteness and openness
We give a new and elementary proof of the known result: a non-constant mapping of finite distortion f : Ω ⊂ ℝn → ℝn is discrete and open, provided that its distortion function if n = 2 and that for some p > n − 1 if n ≥ 3.
Yksilöllisempää matematiikan opetusta
Bi-Sobolev extensions
We give a full characterization of circle homeomorphisms which admit a homeomorphic extension to the unit disk with finite bi-Sobolev norm. As a special case, a bi-conformal variant of the famous Beurling-Ahlfors extension theorem is obtained. Furthermore we show that the existing extension techniques such as applying either the harmonic or the Beurling-Ahlfors operator work poorly in the degenerated setting. This also gives an affirmative answer to a question of Karafyllia and Ntalampekos.
Estimates of Jacobians by subdeterminants
Let ƒ: Ω → ℝn be a mapping in the Sobolev space W1,n−1(Ω,ℝn), n ≥ 2. We assume that the determinant of the differential matrix Dƒ (x) is nonnegative, while the cofactor matrix D#ƒ satisfies\(|D^\sharp f|^{\frac{n}{{n - 1}}} \in L^P (\Omega )\), where Lp(Ω) is an Orlicz space. We show that, under the natural Divergence Condition on P, see (1.10), the Jacobian lies in Lloc1 (Ω). Estimates above and below Lloc1 (Ω) are also studied. These results are stronger than the previously known estimates, having assumed integrability conditions on the differential matrix.
Mappings of finite distortion: decay of the Jacobian in the plane
Jacobian of weak limits of Sobolev homeomorphisms
Abstract Let Ω be a domain in ℝ n {\mathbb{R}^{n}} , where n = 2 , 3 {n=2,3} . Suppose that a sequence of Sobolev homeomorphisms f k : Ω → ℝ n {f_{k}\colon\Omega\to\mathbb{R}^{n}} with positive Jacobian determinants, J ( x , f k ) > 0 {J(x,f_{k})>0} , converges weakly in W 1 , p ( Ω , ℝ n ) {W^{1,p}(\Omega,\mathbb{R}^{n})} , for some p ⩾ 1 {p\geqslant 1} , to a mapping f. We show that J ( x , f ) ⩾ 0 {J(x,f)\geqslant 0} a.e. in Ω. Generalizations to higher dimensions are also given.
Radial symmetry of minimizers to the weighted Dirichlet energy
AbstractWe consider the problem of minimizing the weighted Dirichlet energy between homeomorphisms of planar annuli. A known challenge lies in the case when the weight λ depends on the independent variable z. We prove that for an increasing radial weight λ(z) the infimal energy within the class of all Sobolev homeomorphisms is the same as in the class of radially symmetric maps. For a general radial weight λ(z) we establish the same result in the case when the target is conformally thin compared to the domain. Fixing the admissible homeomorphisms on the outer boundary we establish the radial symmetry for every such weight.
Quasihyperbolic boundary conditions and Poincaré domains
We prove that a domain in ${\Bbb R}^n$ whose quasihyperbolic metric satisfies a logarithmic growth condition with coefficient $\beta\le 1$ is a (q,p)-\Poincare domain for all p and q satisfying $p\in[1,\infty)\cap(n-n\beta,n)$ and $q\in[p,\beta p^*)$ , where $p^*=np/(n-p)$ denotes the Sobolev conjugate exponent. An elementary example shows that the given ranges for p and q are sharp. The proof makes use of estimates for a variational capacity. When p=2 we give an application to the solvability of the Neumann problem on domains with irregular boundaries. We also discuss the relationship between this growth condition on the quasihyperbolic metric and the s-John condition.