6533b839fe1ef96bd12a668b

RESEARCH PRODUCT

Limits of Sobolev homeomorphisms

Jani OnninenJani OnninenTadeusz Iwaniec

subject

DIRICHLET ENERGYGeneral MathematicsDEFORMATIONSMONOTONE MAPPINGSLAPLACE EQUATION01 natural sciencesvariational integralsSobolev inequalityp-harmonic equationNONLINEAR ELASTICITYharmonic mappings111 MathematicsPOINTWISE HARDY INEQUALITIESREGULARITYSPACE0101 mathematicsMathematicsDISTORTIONSURFACESApplied Mathematics010102 general mathematicsMathematical analysisEnergy-minimal deformationsDirichlet's energy010101 applied mathematicsSobolev spaceapproximation of Sobolev homeomorphismsNonlinear elasticity

description

Let X; Y subset of R-2 be topologically equivalent bounded Lipschitz domains. We prove that weak and strong limits of homeomorphisms h: X (onto)-> Y in the Sobolev space W-1,W-p (X, R-2), p >= 2; are the same. As an application, we establish the existence of 2D-traction free minimal deformations for fairly general energy integrals. Peer reviewed

https://doi.org/10.4171/jems/671