6533b861fe1ef96bd12c45a0
RESEARCH PRODUCT
Invertibility of Sobolev mappings under minimal hypotheses
Kai RajalaLeonid V. KovalevJani Onninensubject
Sobolev spaceInverse function theoremDiscrete mathematicsDistortion functionDifferential inclusionIntegrable systemApplied MathematicsLocal homeomorphismDifferentiable functionHomeomorphismMathematical PhysicsAnalysisMathematicsdescription
Abstract We prove a version of the Inverse Function Theorem for continuous weakly differentiable mappings. Namely, a nonconstant W 1 , n mapping is a local homeomorphism if it has integrable inner distortion function and satisfies a certain differential inclusion. The integrability assumption is shown to be optimal.
year | journal | country | edition | language |
---|---|---|---|---|
2010-04-01 | Annales de l'Institut Henri Poincare (C) Non Linear Analysis |