6533b822fe1ef96bd127d507

RESEARCH PRODUCT

${\cal H}^1$ -estimates of Jacobians by subdeterminants

Tadeusz IwaniecJani Onninen

subject

CombinatoricsSobolev spacesymbols.namesakeMatrix (mathematics)Pure mathematicsGeneral MathematicssymbolsHardy spaceOmegaMathematics

description

Let $f:\Omega \rightarrow{\Bbb R}^n$ be a mapping in the Sobolev space $W^{1,n-1}_{loc}(\Omega,{\Bbb R}^n), n\geq 2$ . We assume that the cofactors of the differential matrix Df(x) belong to $L^\frac{n}{n-1}(\Omega)$ . Then, among other things, we prove that the Jacobian determinant detDf lies in the Hardy space ${\cal H}^1(\Omega)$ .

https://doi.org/10.1007/s00208-002-0341-5