6533b7d2fe1ef96bd125e065

RESEARCH PRODUCT

Radó–Kneser–Choquet theorem

Tadeusz IwaniecJani Onninen

subject

Pure mathematicsArzelà–Ascoli theoremFundamental theoremPicard–Lindelöf theoremGeneral MathematicsCompactness theoremta111Fixed-point theoremBrouwer fixed-point theoremSqueeze theoremMean value theoremMathematics

description

We present a new approach to the celebrated theorem of Rado–Kneser–Choquet (RKC) on univalence of planar harmonic mappings. The novelty lies in establishing a continuous path (isotopy) from the given harmonic map to a conformal one. Along this path the mappings retain positive Jacobian determinant by virtue of so-called Minimum Principle. These ideas extend to nonlinear uncoupled systems of partial differential equations, as in Iwaniec, Koski and Onninen [‘Isotropic p-harmonic systems in 2D, Jacobian estimates and univalent solutions’, Rev. Mat. Iberoam, to appear]. Unfortunately, details of such digression would lead us too far afield. Nonetheless, one gains (in particular) the RKC-Theorem for the isotropic p-harmonic deformations.

10.1112/blms/bdu084http://juuli.fi/Record/0028663314