6533b826fe1ef96bd1284746

RESEARCH PRODUCT

Sobolev homeomorphic extensions

Jani OnninenAleksis Koski

subject

Hyperbolic growthMathematics - Complex VariablesApplied MathematicsGeneral Mathematics010102 general mathematicsBoundary (topology)01 natural sciencesHomeomorphismCombinatoricsSobolev spaceBoundary dataFOS: MathematicsComplex Variables (math.CV)0101 mathematicsComplex planeMathematics

description

Let $\mathbb X$ and $\mathbb Y$ be $\ell$-connected Jordan domains, $\ell \in \mathbb N$, with rectifiable boundaries in the complex plane. We prove that any boundary homeomorphism $\varphi \colon \partial \mathbb X \to \partial \mathbb Y$ admits a Sobolev homeomorphic extension $h \colon \overline{\mathbb X} \to \overline{\mathbb Y}$ in $W^{1,1} (\mathbb X, \mathbb C)$. If instead $\mathbb X$ has $s$-hyperbolic growth with $s>p-1$, we show the existence of such an extension lies in the Sobolev class $W^{1,p} (\mathbb X, \mathbb C)$ for $p\in (1,2)$. Our examples show that the assumptions of rectifiable boundary and hyperbolic growth cannot be relaxed. We also consider the existence of $W^{1,2}$-homeomorphic extensions subject to a given boundary data.

http://arxiv.org/abs/1812.02085