6533b7d3fe1ef96bd1260111

RESEARCH PRODUCT

Accessible parts of boundary for simply connected domains

Debanjan NandiPekka KoskelaArtur Nicolau

subject

General MathematicsBoundary (topology)30C35 26D1501 natural sciencesUpper and lower boundsOmegaDomain (mathematical analysis)CombinatoricsfunktioteoriaHardy inequality0103 physical sciencesSimply connected spaceClassical Analysis and ODEs (math.CA)FOS: MathematicsComplex Variables (math.CV)0101 mathematicsepäyhtälötMathematicsPointwiseMathematics - Complex VariablesApplied Mathematics010102 general mathematicsta111simply connected domainsMathematics - Classical Analysis and ODEsBounded functionContent (measure theory)010307 mathematical physicsJohn domains

description

For a bounded simply connected domain $\Omega\subset\mathbb{R}^2$, any point $z\in\Omega$ and any $0<\alpha<1$, we give a lower bound for the $\alpha$-dimensional Hausdorff content of the set of points in the boundary of $\Omega$ which can be joined to $z$ by a John curve with a suitable John constant depending only on $\alpha$, in terms of the distance of $z$ to $\partial\Omega$. In fact this set in the boundary contains the intersection $\partial\Omega_z\cap\partial\Omega$ of the boundary of a John sub-domain $\Omega_z$ of $\Omega$, centered at $z$, with the boundary of $\Omega$. This may be understood as a quantitative version of a result of Makarov. This estimate is then applied to obtain the pointwise version of a weighted Hardy inequality.

10.1090/proc/13994https://doi.org/10.1090/proc/13994