6533b861fe1ef96bd12c446d
RESEARCH PRODUCT
A density problem for Sobolev spaces on Gromov hyperbolic domains
Yi Ru-ya ZhangTapio RajalaPekka Koskelasubject
Pure mathematicsdensityApplied Mathematics010102 general mathematicsta111Sobolev space01 natural sciencesDomain (mathematical analysis)Functional Analysis (math.FA)Sobolev spaceMathematics - Functional AnalysisQuasiconvex functionPlanartiheysBounded function0103 physical sciencesMetric (mathematics)FOS: MathematicsMathematics::Metric Geometry010307 mathematical physics0101 mathematicsAnalysisMathematicsdescription
We prove that for a bounded domain $\Omega\subset \mathbb R^n$ which is Gromov hyperbolic with respect to the quasihyperbolic metric, especially when $\Omega$ is a finitely connected planar domain, the Sobolev space $W^{1,\,\infty}(\Omega)$ is dense in $W^{1,\,p}(\Omega)$ for any $1\le p<\infty$. Moreover if $\Omega$ is also Jordan or quasiconvex, then $C^{\infty}(\mathbb R^n)$ is dense in $W^{1,\,p}(\Omega)$ for $1\le p<\infty$.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 |