0000000001248077

AUTHOR

A. Redwine

showing 3 related works from this author

Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches

2020

The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of neutrinoless double-beta decay decay better than 1E27 years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the in…

Physics - Instrumentation and DetectorsFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)Nuclear Experiment (nucl-ex)Nuclear Experiment
researchProduct

Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches

2021

The NEXT collaboration: et al.

Nuclear and High Energy Physicschemistry.chemical_elementQC770-798Parameter space01 natural sciences7. Clean energyAtomicNuclear physicsXenonParticle and Plasma PhysicsDouble beta decayNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesDark Matter and Double Beta Decay (experiments)NuclearSensitivity (control systems)010306 general physicsMathematical PhysicsPhysicsQuantum Physics010308 nuclear & particles physicsRaigs beta -- DesintegracióDetectorMolecularDetectorsNuclear & Particles PhysicschemistryBeta rays -- DecayNeutrinoTonneOrder of magnitudeJournal of High Energy Physics
researchProduct

Dependence of polytetrafluoroethylene reflectance on thickness at visible and ultraviolet wavelengths in air

2021

Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. However, the reflectance of PTFE is a function of its thickness. In this work, we investigate this dependence in air for light of wavelengths 260 nm and 450 nm using two complementary methods. We find that PTFE reflectance for thicknesses from 5 mm to 10 mm ranges from 92.5% to 94.5% at 450 nm, and from 90.0% to 92.0% at 260 nm. We also see that the reflectance of PTFE of a given thickness can vary by as much as 2.7% within the same piece of material. Finally, we show that placing a specular reflector behind the PTFE can recover the loss of reflectance i…

researchProduct