0000000001248520

AUTHOR

Abderrahmane Belkhir

3034461.pdf

Supplemental document

research product

High performance for refractive index sensors via symmetry-protected guided mode resonance.

The symmetry breaking in a typical dielectric GMR-grating structure allows the coupling of the incident wave with the so-called Symmetry-Protected Modes (SPM). In this present work, the excitation conditions of such particular modes are investigated. A parametric study including the grating dimensions is carried out to exploit them for a blood refractive index sensing with higher Sensitivity (S) and Figure Of Merit (FOM). To our knowledge, the performances obtained by FDTD calculations (Q = 2.1 × 104, S = 657 nm/RIU and FOM ≃ ~9 112 RIU−1) and FMM calculations (Q = 3 × 106, S = 656 nm/RIU and FOM ≃ ~1.64 × 106 RIU−1) are the highest level reached.

research product

3034461.pdf

Supplemental document

research product

Extraordinary nonlinear transmission modulation in a doubly resonant acousto-optical structure

International audience; Acousto-optical modulators usually rely on coherent diffraction of light by a moving acoustic wave, leading to bulky devices with a long interaction length. We propose a subwavelength acousto-optical structure that instead relies on a double resonance to achieve strong modulation at near-infrared wavelengths. A periodic array of metal ridges on a piezoelectric substrate defines cavities that create a resonant dip in the optical transmission spectrum. The ridges simultaneously support large flexural vibrations when resonantly excited by a radio-frequency signal, effectively deforming the cavities and leading to strongly nonlinear acousto-optical modulation. The nano-o…

research product