6533b870fe1ef96bd12d067b

RESEARCH PRODUCT

Extraordinary nonlinear transmission modulation in a doubly resonant acousto-optical structure

Fadi Issam BaidaAbdullah F. AlabiadVincent LaudeSarah BenchabaneAbdelkrim KhelifMahmoud AddoucheAbderrahmane Belkhir

subject

DiffractionMaterials sciencePhysics::Optics02 engineering and technology01 natural sciencesSignal[SPI.MAT]Engineering Sciences [physics]/MaterialsOptics0103 physical sciences[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryFano resonanceAcoustic wave021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsWavelengthSurface waveModulationOptoelectronicsPhotonics0210 nano-technologybusiness

description

International audience; Acousto-optical modulators usually rely on coherent diffraction of light by a moving acoustic wave, leading to bulky devices with a long interaction length. We propose a subwavelength acousto-optical structure that instead relies on a double resonance to achieve strong modulation at near-infrared wavelengths. A periodic array of metal ridges on a piezoelectric substrate defines cavities that create a resonant dip in the optical transmission spectrum. The ridges simultaneously support large flexural vibrations when resonantly excited by a radio-frequency signal, effectively deforming the cavities and leading to strongly nonlinear acousto-optical modulation. The nano-optical structure could find applications in highly compact photonic devices.

10.1364/optica.4.001245https://hal.archives-ouvertes.fr/hal-02131428