0000000001249775

AUTHOR

Stefan Roggan

showing 1 related works from this author

N-doped carbon networks: alternative materials tracing new routes for activating molecular hydrogen.

2014

The fragmentation of molecular hydrogen on N-doped carbon networks was investigated by using molecular (polyaromatic macrocycles) as well as truncated and periodic (carbon nanotubes) models. The computational study was focused on the ergonicity analysis of the reaction and on the properties of the transition states involved when constellations of three or four pyridinic nitrogen atom defects are present in the carbon network. Calculations show that whenever N-defects are embedded in species characterized by large conjugated π-systems, either in polyaromatic macrocycles or carbon nanotubes, the corresponding H2 bond cleavage is largely exergonic. The fragmentation Gibbs free energy is affect…

Models MolecularMacrocyclic CompoundsHydrogenNitrogenchemistry.chemical_elementCarbon nanotubeConjugated systemCatalysislaw.inventionsymbols.namesakeFragmentation (mass spectrometry)lawCarbon networkDopingOrganic chemistryBond cleavageExergonic reactionChemistryNanotubes CarbonOrganic ChemistryChemistry (all)General ChemistryTransition stateCarbonGibbs free energyNanotubeMacrocycleChemical physicssymbolsDensity functional calculationHydrogenChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct