Eliciting expert knowledge to inform stock status for data-limited stock assessments
Data-limited fisheries are a major challenge for stock assessment analysts, as many traditional data-rich models cannot be implemented. Approaches based on stock reduction analysis offer simple ways to handle low data availability, but are particularly sensitive to assumptions on relative stock status (i.e., current biomass compared to unperturbed biomass). For the vast majority of data-limited stocks, stock status is unmeasured. The present study presents a method to elicit expert knowledge to inform stock status and a novel, user-friendly on-line application for expert elicitation. Expert opinions are compared to stock status derived from data-rich models. Here, it is evaluated how expert…