0000000001251731

AUTHOR

Sam Azadi

Quantum Monte Carlo study of high pressure solid molecular hydrogen

We use the diffusion quantum Monte Carlo (DMC) method to calculate the ground state phase diagram of solid molecular hydrogen and examine the stability of the most important insulating phases relative to metallic crystalline molecular hydrogen. We develop a new method to account for finite-size errors by combining the use of twist-averaged boundary conditions with corrections obtained using the Kwee-Zhang-Krakauer (KZK) functional in density functional theory. To study band-gap closure and find the metallization pressure, we perform accurate quasi-particle many-body calculations using the $GW$ method. In the static approximation, our DMC simulations indicate a transition from the insulating…

research product

Resonating valence bond quantum Monte Carlo: Application to the ozone molecule

We study the potential energy surface of the ozone molecule by means of Quantum Monte Carlo simulations based on the resonating valence bond concept. The trial wave function consists of an antisymmetrized geminal power arranged in a single-determinant that is multiplied by a Jastrow correlation factor. Whereas the determinantal part incorporates static correlation effects, the augmented real-space correlation factor accounts for the dynamics electron correlation. The accuracy of this approach is demonstrated by computing the potential energy surface for the ozone molecule in three vibrational states: symmetric, asymmetric and scissoring. We find that the employed wave function provides a de…

research product

The fate of the resonating valence bond in graphene

We apply a variational wave function capable of describing qualitatively and quantitatively the so called "resonating valence bond" in realistic materials, by improving standard ab initio calculations by means of quantum Monte Carlo methods. In this framework we clearly identify the Kekul\'e and Dewar contributions to the chemical bond of the benzene molecule, and we establish the corresponding resonating valence bond energy of these well known structures ($\simeq 0.01$eV/atom). We apply this method to unveil the nature of the chemical bond in undoped graphene and show that this picture remains only within a small "resonance length" of few atomic units.

research product

Anhamonic finite temperature effects on the Raman and Infrared spectra to determine the crystal structure phase III of solid molecular hydrogen

We present theoretical calculations of the Raman and IR spectra, as well as electronic properties at zero and finite temperature to elucidate the crystal structure of phase III of solid molecular hydrogen. We find that anharmonic finite temperature are particularly important and qualitatively influences the main conclusions. While P6$_3$/m is the most likely candidate for phase III at the nuclear ground state, at finite temperature the C2/c structure appears to be more suitable.

research product