0000000001252244

AUTHOR

Juuso Reinikainen

Total absorption γ -ray spectroscopy of niobium isomers

15 pags. 17 figs., 5 tabs.

research product

First determination of β-delayed multiple neutron emission beyond A = 100 through direct neutron measurement : The P2n value of 136Sb

Background: β-delayed multiple neutron emission has been observed for some nuclei with A≤100, being the Rb100 the heaviest β2n emitter measured to date. So far, only 25P2n values have been determined for the ≈300 nuclei that may decay in this way. Accordingly, it is of interest to measure P2n values for the other possible multiple neutron emitters throughout the chart of the nuclides. It is of particular interest to make such a measurement for nuclei with A>100 to test the predictions of theoretical models and simulation tools for the decays of heavy nuclei in the region of very neutron-rich nuclei. In addition, the decay properties of these nuclei are fundamental for the understanding of a…

research product

Experimental study of 100Tc β decay with total absorption γ -ray spectroscopy

The β decay of 100Tc has been studied by using the total absorption γ -ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility in Jyväskylä. In this work the new Decay Total Absorption γ -ray Spectrometer in coincidence with a cylindrical plastic β detector has been employed. The β intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first-excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random-phase approximation framework are also r…

research product

Total absorption studies of high priority decays for reactor applications: 86Br and 91Rb

Preliminary results from beta decay studies of nuclei that are important for reactor applications are presented. The beta decays have been studied using the total absorption technique (TAS) and the pure beams provided by the JYFLTRAP system at the IGISOL facility of the University of Jyväskylä. peerReviewed

research product

Study of the β decay of fission products with the DTAS detector

Total Absorption Spectroscopy measurements of the β decay of 103Mo and 103Tc, important contributors to the decay heat summation calculation in reactors, are reported in this work. The analysis of the experiment, performed at IGISOL with the new DTAS detector, show new β intensity that was not detected in previous measurements with Ge detectors. peerReviewed

research product

Single and Double Beta-DecayQValues among the TripletZr96,Nb96, andMo96

The atomic mass relations among the mass triplet ^{96}Zr, ^{96}Nb, and ^{96}Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyvaskyla. We report Q values for the ^{96}Zr single and double β decays to ^{96}Nb and ^{96}Mo, as well as the Q value for the ^{96}Nb single β decay to ^{96}Mo, which are Q_{β}(^{96}Zr)=163.96(13), Q_{ββ}(^{96}Zr)=3356.097(86), and Q_{β}(^{96}Nb)=3192.05(16)  keV. Of special importance is the ^{96}Zr single β-decay Q value, which has never been determined directly. The single β decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the…

research product

Penning-trap-assisted study of excitations in Br88 populated in β decay of Se88

Excited levels of $^{88}\mathrm{Br}$ populated in the $\ensuremath{\beta}$ decay of $^{88}\mathrm{Se}$ have been studied by means of $\ensuremath{\beta}\ensuremath{\gamma}$ and $\ensuremath{\gamma}\ensuremath{\gamma}$ spectroscopy methods. Neutron-rich parent $^{88}\mathrm{Se}$ nuclei were produced with proton-induced fission of $^{238}\mathrm{U}$ using the Ion Guide Isotope Separator On-Line (IGISOL) method and separated from contaminants using a dipole magnet and the coupled JYFLTRAP Penning trap at the Accelerator Laboratory of the University of Jyv\"askyl\"a. The level scheme of $^{88}\mathrm{Br}$ has been constructed and $logft$ values of levels were determined. The ground-state spin o…

research product

High-Precision Proton-Capture Q Values for 25Al(p,γ)26Si and 30P(p,γ)31Si

The masses of astrophysically relevant nuclei, 25Al and 30P, have recently been measured with the JYFLTRAP double Penning trap at the new IGISOL-4 facility at the University of Jyväskylä. Unparalleled precisions of 63 and 64 eV were achieved for the 25Al and 30P masses, respectively. The proton-capture Q values for 25Al(p, γ)26Si and 30P(p, γ)31S were also determined, and their precisions improved by a factor of 4 and 2, respectively, in comparison with AME12. The impact of the more precise values on the resonant proton-capture rate has also been studied. peerReviewed

research product

Developments for neutron-induced fission at IGISOL-4

At the IGISOL-4 facility, neutron-rich, medium mass nuclei have usually been produced via charged particle-induced fission of natural uranium and thorium. Neutron-induced fission is expected to have a higher production cross section of the most neutron-rich species. Development of a neutron source along with a new ion guide continues to be one of the major goals since the commissioning of IGISOL-4. Neutron intensities at di↵erent angles from a beryllium neutron source have been measured in an on-line experiment with a 30 MeV proton beam. Recently, the new ion guide coupled to the neutron source has been tested as well. Details of the neutron source and ion guide design together with prelimi…

research product

Super-Allowed β Decay of23Mg Studied with a High-Precision Germanium Detector

research product

Large Impact of the Decay of Niobium Isomers on the Reactor ¯νe Summation Calculations

Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The β-intensity distributions of 100gs;100mNb and 102gs;102mNb β decays have been determined using the total absorption γ-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyväskylä. Here, the double Penning trap system JYFLTRAP was employed to disentangle the β decay of the isomeric states. The new data obtained in this …

research product

Total absorption γ -ray spectroscopy of the β -delayed neutron emitters I137 and Rb95

The decays of the β-delayed neutron emitters I137 and Rb95 have been studied with the total absorption γ-ray spectroscopy technique. The purity of the beams provided by the JYFLTRAP Penning trap at the ion guide isotope separator on-line facility in Jyvaskyla allowed us to carry out a campaign of isotopically pure measurements with the decay total absorption γ-ray spectrometer, a segmented detector composed of 18 NaI(Tl) modules. The contamination coming from the interaction of neutrons with the spectrometer has been carefully studied, and we have tested the use of time differences between prompt γ rays and delayed neutron interactions to eliminate this source of contamination. Due to the s…

research product

Measurement of the heaviest Beta-delayed 2-neutron emitter: 136Sb

The Beta-delayed neutron emission probability, Pn , of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition Beta-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of Beta-delayed one-neutron emitters (Beta1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, w…

research product

Characterization of a cylindrical plastic β-detector with Monte Carlo simulations of optical photons

In this work we report on the Monte Carlo study performed to understand and reproduce experimental measurements of a new plastic β-detector with cylindrical geometry. Since energy deposition simulations differ from the experimental measurements for such a geometry, we show how the simulation of production and transport of optical photons does allow one to obtain the shapes of the experimental spectra. Moreover, taking into account the computational effort associated with this kind of simulation, we develop a method to convert the simulations of energy deposited into light collected, depending only on the interaction point in the detector. This method represents a useful solution when extens…

research product

Determination of β -decay ground state feeding of nuclei of importance for reactor applications

12 pags., 6 figs., 3 tabs.

research product

Precise measurements of half-lives and branching ratios for the ββ mirror transitions in the decay of 23Mg and 27Si

Half-lives and branching ratios for the two mirror ββ decays of 23Mg and 27Si have been measured at the University of Jyväskylä with the IGISOL facility. The results obtained, T1/2=11.303(3)T1/2=11.303(3) s and T1/2=4.112(2)T1/2=4.112(2) s for the half-lives of 23Mg and 27Si , respectively, are 7 and 8 times more precise than the averages of previous measurements. The values obtained for the super-allowed branching ratios of 23Mg and 27Si are B.R.=92.18(8)%B.R.=92.18(8)% and B.R.=99.74(2)%B.R.=99.74(2)% , respectively. The result for 23Mg is three times more precise than the average of the previous measurements, while for 27Si the precision has not been improved, the average of the previous…

research product

High-precision mass measurements for the isobaric multiplet mass equation atA= 52

Masses of $^{52}$Co, $^{52}$Co$^m$, $^{52}$Fe, $^{52}$Fe$^m$, and $^{52}$Mn have been measured with the JYFLTRAP double Penning trap mass spectrometer. Of these, $^{52}$Co and $^{52}$Co$^m$ have been experimentally determined for the first time and found to be more bound than predicted by extrapolations. The isobaric multiplet mass equation for the $T=2$ quintet at $A=52$ has been studied employing the new mass values. No significant breakdown (beyond the $3\sigma$ level) of the quadratic form of the IMME was observed ($\chi^2/n=2.4$). The cubic coefficient was 6.0(32) keV ($\chi^2/n=1.1$). The excitation energies for the isomer and the $T=2$ isobaric analogue state in $^{52}$Co have been d…

research product

Strong γ-ray emission from neutron unbound states populated in β-decay: Impact on (n,γ) cross-section estimates

J. L. Taín et al. -- 6 pags., 7 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0

research product

Precision Ga71–Ge71 mass-difference measurement

Abstract The Ga 71 ( ν e , e − ) Ge 71 reaction Q value has been measured with the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyvaskyla to Q  = 232.443(93) keV. This value agrees with previous measurements, though it features a much higher accuracy. The Q value is being discussed in the context of the solar neutrino capture rate in Ga 71 .

research product

Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra

International audience; The accurate determination of reactor antineutrino spectra remains a very active research topic for which new methods of study have emerged in recent years. Indeed, following the long-recognized reactor anomaly (measured antineutrino deficit in short baseline reactor experiments when compared with spectral predictions), the three international reactor neutrino experiments Double Chooz, Daya Bay and Reno have recently demonstrated the existence of spectral distortions in their measurements with respect to the same predictions. These spectral predictions were obtained through the conversion of integral beta-energy spectra obtained at the ILL research reactor. Several s…

research product

High-precision mass measurements of 25Al and 30P at JYFLTRAP

The masses of the astrophysically relevant nuclei 25Al and 30P have been measured with a Penning trap for the first time. The mass-excess values for 25Al ( $\Delta = -8915.962(63)$ keV) and 30P ( $\Delta = -20200.854(64)$ keV) obtained with the JYFLTRAP double Penning trap mass spectrometer are in good agreement with the Atomic Mass Evaluation 2012 values but $ \approx$ 5-10 times more precise. A high precision is required for calculating resonant proton-capture rates of astrophysically important reactions 25Al (p, $ \gamma$ )26Si and 30P(p, $ \gamma$ )31S . In this work, $ Q_{(p,\gamma)} = 5513.99(13)$ keV and $ Q_{(p,\gamma)} = 6130.64(24)$ keV were obtained for 25Al and 30P , respectivel…

research product

Mass Measurements for the rp Process

One of the key parameters for the reaction network calculations for the rapid proton capture (rp) process, occurring e.g., in type I X-ray bursts, are the masses of the involved nuclei. Nowadays, masses of even rather exotic nuclei can be measured very precisely employing Penning-trap mass spectrometry. With the JYFLTRAP Penning trap at the IGISOL facility, masses of around 100 neutron-deficient nuclei have been determined with a typical precision of a few keV. Most recently, 25Al, 30P, 31Cl, and 52Co have been measured. Of these, the precision of the mass-excess value of 31Cl was improved from 50 to 3.4 keV, and the mass of 52Co was experimentally determined for the first time. The mass of…

research product

First evidence of multiple β-delayed neutron emission for isotopes with a > 100

The β-delayed neutron emission probability, Pn, of very neutron-rich nuclei allows us to achieve a better understanding of the nuclear structure above the neutron separation energy, Sn. The emission of neutrons can become the dominant decay process in neutron-rich astrophysical phenomena such as the rapid neutron capture process (r-process). There are around 600 accessible isotopes for which β-delayed one-neutron emission (β1n) is energetically allowed, but the branching ratio has only been determined for about one third of them. β1n decays have been experimentally measured up to the mass A ∼ 150, plus a single measurement of 210Tl. Concerning two-neutron emitters (β2n), ∼ 300 isotopes are …

research product

r Process (n, γ) Rate Constraints from the γ Emission of Neutron Unbound States in β decay

Total absorption gamma-ray spectroscopy is used to measure accurately the intensity of γγ emission from neutron-unbound states populated in the ββ-decay of delayed-neutron emitters. From the comparison of this intensity with the intensity of neutron emission a constraint on the (n, γγ) cross section for highly unstable neutron-rich nuclei can be deduced. A surprisingly large γγ branching was observed for a number of isotopes which might indicate the need to increase by a large factor the Hauser-Feshbach (n, γγ) cross-section estimates that impact on r process abundance calculations. peerReviewed

research product

Mass of astrophysically relevantCl31and the breakdown of the isobaric multiplet mass equation

The mass of $^{31}\mathrm{Cl}$ has been measured with the JYFLTRAP double-Penning-trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility. The determined mass-excess value, $\ensuremath{-}7034.7(34)$ keV, is 15 times more precise than in the Atomic Mass Evaluation 2012. The quadratic form of the isobaric multiplet mass equation for the $T=3/2$ quartet at $A=31$ fails $({\ensuremath{\chi}}_{n}^{2}=11.6)$ and a nonzero cubic term, $d=\ensuremath{-}3.5(11)$ keV, is obtained when the new mass value is adopted. $^{31}\mathrm{Cl}$ has been found to be less proton-bound, with a proton separation energy of ${S}_{p}=264.6(34)$ keV. Energies for the excited states in $^{31…

research product

Mass Measurements for the rp Process

research product

Summation Calculations for Reactor Antineutrino Spectra, Decay Heat and Delayed Neutron Fractions Involving New TAGS Data and Evaluated Databases

9 pags., 3 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0

research product

Characterization and performance of the DTAS detector

11 pags., 16 figs., 3 tabs.

research product

Precision 71Ga – 71Ge mass-difference measurement

The 71Ga(νe, e−) 71Ge reaction Q value has been measured with the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyv¨askyl¨a to Q = 232.443(93) keV. This value agrees with previous measurements, though it features a much higher accuracy. The Q value is being discussed in the context of the solar neutrino capture rate in 71Ga. peerReviewed

research product

First experiment with the NUSTAR/FAIR Decay Total Absorption γ-Ray Spectrometer (DTAS) at the IGISOL IV facility

V. Guadilla et al. ; 4 págs.; 4 figs.; 1 tab.

research product

Characterization of a cylindrical plastic {\beta}-detector with Monte Carlo simulations of optical photons

V. Guadilla et al. -- 5 pags., 8 figs., tab.

research product

Large Impact of the Decay of Niobium Isomers on the Reactor ν¯e Summation Calculations

Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The beta-intensity distributions of Nb-100gs,Nb-100m and Nb-102gs,Nb-02m beta decays have been determined using the total absorption.-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyvaskyla. Here, the double Penning trap system JYFLTRAP was employed to disentangle the beta decay of the isomeric states. The new data ob…

research product

TAGS measurements of $^{100}$Nb ground and isomeric states and $^{140}$Cs for neutrino physics with the new DTAS detector

V. Guadilla et al. -- 4 pags., 6 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0

research product

QEC value of the superallowed β emitter 42Sc

The QEC value of the superallowed β+ emitter Sc42 has been measured with the JYFLTRAP Penning-trap mass spectrometer at the University of Jyväskylä to be 6426.350(53) keV. This result is at least a factor of four more precise than all previous measurements, which were also inconsistent with one another. As a byproduct we determine the excitation energy of the 7+ isomeric state in Sc42 to be 616.762(46) keV, which deviates by 8σ from the previous measurement. peerReviewed

research product

QEC value of the superallowed β emitter Sc42

Precise measurements of superallowed ${0}^{+}\ensuremath{\rightarrow}{0}^{+}$ $\ensuremath{\beta}$ decay presently provide the most precise value for the weak mixing amplitude ${V}_{u\phantom{\rule{0}{0ex}}d}$. As the largest element of the CKM matrix, ${V}_{u\phantom{\rule{0}{0ex}}d}$ is a critical piece of the Standard Model of the electroweak interaction. The new, precise Penning-trap mass measurement of the decay energy for the superallowed transition in ${}^{42}$Sc opens the door for a much more precise $f\phantom{\rule{0}{0ex}}t$ value determination if its half-life can be measured more precisely as well.

research product

Disentangling decaying isomers and searching for signatures of collective excitations in β decay

6 pags., 3 figs., 1 tab. -- 27th International Nuclear Physics Conference (INPC2019) 29 July - 2 August 2019, Glasgow, UK

research product