0000000001253518

AUTHOR

Elena Giusarma

showing 27 related works from this author

Phenomenological approaches of inflation and their equivalence

2014

In this work, we analyze two possible alternative and model-independent approaches to describe the inflationary period. The first one assumes a general equation of state during inflation due to Mukhanov, while the second one is based on the slow-roll hierarchy suggested by Hoffman and Turner. We find that, remarkably, the two approaches are equivalent from the observational viewpoint, as they single out the same areas in the parameter space, and agree with the inflationary attractors where successful inflation occurs. Rephrased in terms of the familiar picture of a slowly rolling, canonically normalized scalar field, the resulting inflaton excursions in these two approaches are almost ident…

PhysicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsFísicaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsInflatonParameter space01 natural sciencessymbols.namesakeTheoretical physicsGeneral Relativity and Quantum Cosmology0103 physical sciencesAttractorsymbolsInflationary epochPlanck010306 general physicsScalar fieldEquivalence (measure theory)Eternal inflationAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Dark Radiation in extended cosmological scenarios

2012

Recent cosmological data have provided evidence for a "dark" relativistic background at high statistical significance. Parameterized in terms of the number of relativistic degrees of freedom Neff, however, the current data seems to indicate a higher value than the one expected in the standard scenario based on three active neutrinos. This dark radiation component can be characterized not only by its abundance but also by its clustering properties, as its effective sound speed and its viscosity parameter. It is therefore crucial to study the correlations among the dark radiation properties and key cosmological parameters, as the dark energy equation of state or the running of the scalar spec…

PhysicsNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsEquation of state (cosmology)Hot dark matterScalar field dark matterFísicaFOS: Physical sciencesLambda-CDM modelAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesThermodynamics of the universeDark radiation0103 physical sciencesDark energy010303 astronomy & astrophysicsDark fluidAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

New Neutrino Mass Bounds from SDSS-III Data Release 8 Photometric Luminous Galaxies

2012

We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release 8. The galaxies have photometric redshifts between z = 0.45 and z = 0.65 and cover 10,000 deg(2), thus probing a volume of 3 h(-3) Gpc(3) and enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses Sigma m nu < 0.27 eV, at the 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call CMASS with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year cosmic microwave background data and the most recent measurement of the Hubb…

Physics010308 nuclear & particles physicsDark matterCosmic microwave backgroundOrder (ring theory)FísicaAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesCMB cold spotRedshiftGalaxysymbols.namesake13. Climate actionSpace and Planetary Science0103 physical sciencessymbolsNeutrino010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHubble's law
researchProduct

Impact of neutrino properties on the estimation of inflationary parameters from current and future observations

2016

We study the impact of assumptions about neutrino properties on the estimation of inflationary parameters from cosmological data, with a specific focus on the allowed contours in the $n_s/r$ plane. We study the following neutrino properties: (i) the total neutrino mass $ M_\nu =\sum_i m_i$; (ii) the number of relativistic degrees of freedom $N_{eff}$; and (iii) the neutrino hierarchy: whereas previous literature assumed 3 degenerate neutrino masses or two massless neutrino species (that do not match neutrino oscillation data), we study the cases of normal and inverted hierarchy. Our basic result is that these three neutrino properties induce $< 1 \sigma$ shift of the probability contours in…

PhysicsSpectral indexParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsDegenerate energy levelsCosmic microwave backgroundScalar (mathematics)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesBaryonMassless particleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrinoNeutrino oscillation010303 astronomy & astrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Current status of modified gravity

2014

We revisit the cosmological viability of the Hu-Sawicki modified gravity scenario. The impact of such a modification on the different cosmological observables, including gravitational waves, is carefully described. The most recent cosmological data, as well as constraints on the relationship between the clustering parameter ${\ensuremath{\sigma}}_{8}$ and the current matter mass-energy density ${\mathrm{\ensuremath{\Omega}}}_{m}$ from cluster number counts and weak lensing tomography, are considered in our numerical calculations. The strongest bound we find is $|{f}_{R0}|l3.7\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$ at 95% C.L. Forthcoming cluster surveys covering $10\text{ …

PhysicsNuclear and High Energy PhysicsFísicaAstrophysics::Cosmology and Extragalactic AstrophysicsCosmological modelOmegaGalaxyCosmologyQuantum mechanicsAstronomiaGalaxy clusterWeak gravitational lensingMathematical physicsPhysical Review D
researchProduct

Neutrino and dark radiation properties in light of recent CMB observations

2013

Recent cosmic microwave background measurements at high multipoles from the South Pole Telescope and from the Atacama Cosmology Telescope seem to disagree in their conclusions for the neutrino and dark radiation properties. In this paper we set new bounds on the dark radiation and neutrino properties in different cosmological scenarios combining the ACT and SPT data with the nine-year data release of the Wilkinson Microwave Anisotropy Probe (WMAP-9), baryon acoustic oscillation data, Hubble Telescope measurements of the Hubble constant, and supernovae Ia luminosity distance data. In the standard three massive neutrino case, the two high multipole probes give similar results if baryon acoust…

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaDark matterCosmic microwave backgroundFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesRadiacióHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsCosmologia010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsHubble ConstantCosmological modelCMB cold spotHigh Energy Physics - Phenomenology13. Climate actionDark radiationChristian ministryNeutrinoBaryuon Acosutic-OscillationsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Constraints on massive sterile neutrino species from current and future cosmological data

2011

Sterile massive neutrinos are a natural extension of the Standard Model of elementary particles. The energy density of the extra sterile massive states affects cosmological measurements in an analogous way to that of active neutrino species. We perform here an analysis of current cosmological data and derive bounds on the masses of the active and the sterile neutrino states as well as on the number of sterile states. The so-called (3+2) models with three sub-eV active massive neutrinos plus two sub-eV massive sterile species is well within the 95% CL allowed regions when considering cosmological data only. If the two extra sterile states have thermal abundances at decoupling, Big Bang Nucle…

PhysicsNuclear and High Energy PhysicsSterile neutrinoParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics::PhenomenologyCosmic background radiationFOS: Physical sciencesFísicaAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsDecoupling (cosmology)CosmologyHigh Energy Physics - Phenomenologysymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesissymbolsQuantitative Biology::Populations and EvolutionHigh Energy Physics::ExperimentNeutrinoNeutrino oscillationAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawPhysical Review D
researchProduct

Dark Radiation and Inflationary Freedom after Planck 2015

2016

The simplest inflationary models predict a primordial power spectrum (PPS) of the curvature fluctuations that can be described by a power-law function that is nearly scale-invariant. It has been shown, however, that the low-multipole spectrum of the CMB anisotropies may hint the presence of some features in the shape of the scalar PPS, which could deviate from its canonical power-law form. We study the possible degeneracies of this non-standard PPS with the neutrino anisotropies, the neutrino masses, the effective number of relativistic species and a sterile neutrino or a thermal axion mass. The limits on these additional parameters are less constraining in a model with a non-standard PPS w…

PhysicsParticle physicsSterile neutrinoCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsScalar (mathematics)Cosmic microwave backgroundSpectral densityFOS: Physical sciences01 natural sciencessymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Dark radiation0103 physical sciencessymbolsPlanckNeutrino010306 general physicsAxionAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Harrison-Zel'dovich primordial spectrum is consistent with observations

2010

Inflation predicts primordial scalar perturbations with a nearly scale-invariant spectrum and a spectral index approximately unity (the Harrison--Zel'dovich (HZ) spectrum). The first important step for inflationary cosmology is to check the consistency of the HZ primordial spectrum with current observations. Recent analyses have claimed that a HZ primordial spectrum is excluded at more than 99% c.l.. Here we show that the HZ spectrum is only marginally disfavored if one considers a more general reionization scenario. Data from the Planck mission will settle the issue.

Inflation (cosmology)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Scalar (mathematics)Spectral densityFOS: Physical sciencesFísicaAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsCMB cold spotGeneral Relativity and Quantum CosmologyCosmologyHigh Energy Physics - Phenomenologysymbols.namesakeGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)Observational cosmologysymbolsPlanckAstrophysics - High Energy Astrophysical PhenomenaReionizationAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Testing standard and nonstandard neutrino physics with cosmological data

2012

Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species in standard and nonstandard scenarios are computed using the most recent available cosmological data. Our cosmological data sets include the measurement of the baryonic acoustic oscillation (BAO) feature in the data release 9 CMASS sample of the baryon oscillation spectroscopic survey. We study in detail the different degeneracies among the parameters, as well as the impact of the different data sets used in the analyses. When considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from galaxy clustering measurements is approximately equally pow…

AstrofísicaNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic background radiationFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesCosmologyPower spectrumsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino oscillationTelescope010303 astronomy & astrophysicsDigital sky surveyPhysicsHubble constantCosmologia010308 nuclear & particles physicsMatter power spectrumBig-bang nucleosynthesisCMB cold spotHigh Energy Physics - Phenomenology13. Climate actionParameterssymbolsBaryon acoustic-oscillationsBaryon acoustic oscillationsNeutrinoData releaseAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawPhysical Review D
researchProduct

Dark radiation and interacting scenarios

2013

An extra dark radiation component can be present in the universe in the form of sterile neutrinos, axions or other very light degrees of freedom which may interact with the dark matter sector. We derive here the cosmological constraints on the dark radiation abundance, on its effective velocity and on its viscosity parameter from current data in dark radiation-dark matter coupled models. The cosmological bounds on the number of extra dark radiation species do not change significantly when considering interacting schemes. We also find that the constraints on the dark radiation effective velocity are degraded by an order of magnitude while the errors on the viscosity parameter are a factor of…

Nuclear and High Energy PhysicsSterile neutrinoCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterCosmological parametersCosmic background radiationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesCosmologyRadiacióPower spectrumsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010303 astronomy & astrophysicsAxionTelescopeDigital sky surveyPhysicsCosmologiaHubble constant010308 nuclear & particles physicsSpectral densityMicrowave background anisotropiesHigh Energy Physics - Phenomenology13. Climate actionDark radiationConstraintssymbolsHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmological limits on neutrino unknowns versus low redshift priors

2015

Recent Cosmic Microwave Background (CMB) temperature and polarization anisotropy measurements from the Planck mission have significantly improved previous constraints on the neutrino masses as well as the bounds on extended models with massless or massive sterile neutrino states. However, due to parameter degeneracies, additional low redshift priors are mandatory in order to sharpen the CMB neutrino bounds. We explore here the role of different priors on low redshift quantities, such as the Hubble constant, the cluster mass bias, and the reionization optical depth $\tau$. Concerning current priors on the Hubble constant and the cluster mass bias, the bounds on the neutrino parameters may di…

PhysicsSterile neutrinoParticle physicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)010308 nuclear & particles physicsCosmic microwave backgroundFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesRedshiftMassless particlesymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencessymbolsPlanckNeutrino010303 astronomy & astrophysicsReionizationHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Robustness of cosmological axion mass limits

2015

We present cosmological bounds on the thermal axion mass in an extended cosmological scenario in which the primordial power spectrum of scalar perturbations differs from the usual power-law shape predicted by the simplest inflationary models. The power spectrum is instead modeled by means of a "piecewise cubic Hermite interpolating polynomial" (PCHIP). When using Cosmic Microwave Background measurements combined with other cosmological data sets, the thermal axion mass constraints are degraded only slightly. The addition of the measurements of $\sigma_8$ and $\Omega_m$ from the 2013 Planck cluster catalogue on galaxy number counts relaxes the bounds on the thermal axion mass, mildly favouri…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsParticle physicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsCosmic microwave backgroundScalar (mathematics)Cosmic background radiationFOS: Physical sciencesFísicaSpectral densityAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesCosmologysymbols.namesake13. Climate action0103 physical sciencessymbolsPlanckNeutrino010306 general physicsAstrophysics - High Energy Astrophysical PhenomenaAxionAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Impact of general reionization scenarios on extraction of inflationary parameters

2010

Determination of whether the Harrison-Zel'dovich spectrum for primordial scalar perturbations is consistent with observations is sensitive to assumptions about the reionization scenario. In light of this result, we revisit constraints on inflationary models using more general reionization scenarios. While the bounds on the tensor-to-scalar ratio are largely unmodified, when different reionization schemes are addressed, hybrid models are back into the inflationary game. In the general reionization picture, we reconstruct both the shape and amplitude of the inflaton potential. We discuss how relaxing the simple reionization restriction affects the reconstruction of the potential through the c…

Inflation (cosmology)PhysicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundCosmic background radiationAstrophysics::Instrumentation and Methods for AstrophysicsSpectral densityFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsInflatonCMB cold spotCosmologyGeneral Relativity and Quantum CosmologyFísica nuclearReionizationAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

On the improvement of cosmological neutrino mass bounds

2016

The most recent measurements of the temperature and low-multipole polarization anisotropies of the Cosmic Microwave Background (CMB) from the Planck satellite, when combined with galaxy clustering data from the Baryon Oscillation Spectroscopic Survey (BOSS) in the form of the full shape of the power spectrum, and with Baryon Acoustic Oscillation measurements, provide a $95\%$ confidence level (CL) upper bound on the sum of the three active neutrinos $\sum m _��&lt; 0.183$ eV, among the tightest neutrino mass bounds in the literature, to date, when the same datasets are taken into account. This very same data combination is able to set, at $\sim70\%$ CL, an upper limit on $\sum m _��$ of $0.…

High Energy Astrophysical Phenomena (astro-ph.HE)Cosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Unveiling ν secrets with cosmological data: Neutrino masses and mass hierarchy

2017

Using some of the latest cosmological datasets publicly available, we derive the strongest bounds in the literature on the sum of the three active neutrino masses, $M_\nu$, within the assumption of a background flat $\Lambda$CDM cosmology. In the most conservative scheme, combining Planck cosmic microwave background (CMB) temperature anisotropies and baryon acoustic oscillations (BAO) data, as well as the up-to-date constraint on the optical depth to reionization ($\tau$), the tightest $95\%$ confidence level (C.L.) upper bound we find is $M_\nu0.06\,{\rm eV}$ from oscillations data would raise the quoted upper bounds by ${\cal O}(0.1\sigma)$ and would not affect our conclusions.

PhysicsParticle physics010308 nuclear & particles physicsCosmic background radiationSpectral densityAstrophysics::Cosmology and Extragalactic AstrophysicsLambda01 natural sciencesUpper and lower boundsBaryonHigh Energy Physics - Phenomenologysymbols.namesakeQuantum mechanics0103 physical sciencessymbolsBaryon acoustic oscillationsNeutrino010306 general physicsAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawPhysical Review D
researchProduct

Constraints on neutrino masses from Planck and Galaxy clustering data

2013

We present here bounds on neutrino masses from the combination of recent Planck cosmic microwave background (CMB) measurements and galaxy clustering information from the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey-III. We use the full shape of either the photometric angular clustering (Data Release 8) or the 3D spectroscopic clustering (Data Release 9) power spectrum in different cosmological scenarios. In the Lambda CDM scenario, spectroscopic galaxy clustering measurements improve significantly the existing neutrino mass bounds from Planck data. We find Sigma m(v) < 0.39 eV at 95% confidence level for the combination of the 3D power spectrum with Planck C…

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Age of the universeCosmic microwave backgroundDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesPartícules (Física nuclear)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPlanck010303 astronomy & astrophysicsDigital sky surveyPhysicsCosmologia010308 nuclear & particles physicsHigh Energy Physics - Phenomenology13. Climate actionsymbolsDark energyBaryon acoustic-oscillationsBaryon acoustic oscillationsNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawPhysical Review D
researchProduct

The present and future of the most favoured inflationary models after $Planck$ 2015

2015

The value of the tensor-to-scalar ratio $r$ in the region allowed by the latest $Planck$ 2015 measurements can be associated to a large variety of inflationary models. We discuss here the potential of future Cosmic Microwave Background cosmological observations in disentangling among the possible theoretical scenarios allowed by our analyses of current $Planck$ temperature and polarization data. Rather than focusing only on $r$, we focus as well on the running of the primordial power spectrum, $\alpha_s$ and the running of thereof, $\beta_s$. Our Fisher matrix method benefits from a detailed and realistic appraisal of the expected foregrounds. Future cosmological probes, as the COrE mission…

PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsCosmic microwave backgroundSpectral densityFOS: Physical sciencesAstronomy and AstrophysicsPlanck temperatureAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesake0103 physical sciencessymbolsPlanck010303 astronomy & astrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmological axion and neutrino mass constraints from Planck 2015 temperature and polarization data

2015

Axions currently provide the most compelling solution to the strong CP problem. These particles may be copiously produced in the early universe, including via thermal processes. Therefore, relic axions constitute a hot dark matter component and their masses are strongly degenerate with those of the three active neutrinos, as they leave identical signatures in the different cosmological observables. In addition, thermal axions, while still relativistic states, also contribute to the relativistic degrees of freedom, parameterised via $N_{eff}$. We present the cosmological bounds on the relic axion and neutrino masses, exploiting the full Planck mission data, which include polarization measure…

Particle physicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesake0103 physical sciencesPlanck010303 astronomy & astrophysicsAxionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAxion Dark Matter ExperimentHot dark matterHigh Energy Physics::PhenomenologyObservablelcsh:QC1-999symbolsStrong CP problemNeutrinoAstrophysics - High Energy Astrophysical Phenomenalcsh:PhysicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysics Letters B
researchProduct

Cosmic Dark Radiation and Neutrinos

2013

New measurements of the cosmic microwave background (CMB) by the Planck mission have greatly increased our knowledge about the universe. Dark radiation, a weakly interacting component of radiation, is one of the important ingredients in our cosmological model which is testable by Planck and other observational probes. At the moment, the possible existence of dark radiation is an unsolved question. For instance, the discrepancy between the value of the Hubble constant, H-0, inferred from the Planck data and local measurements of H-0 can to some extent be alleviated by enlarging the minimal ACDM model to include additional relativistic degrees of freedom. From a fundamental physics point of v…

Big BangNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Article SubjectAge of the universeDark matterFOS: Physical sciencesLambda-CDM modelAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesBayron acoustic-Oscillationssymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Analytic approach0103 physical sciencesPlanck010306 general physicsPhysicsAstrophysics - Cosmology and Extragalactic Astrophysics010308 nuclear & particles physicsHot dark matterFísicalcsh:QC1-999High Energy Physics - Phenomenology13. Climate actionDark radiationDark energysymbolslcsh:PhysicsAstrophysics - Cosmology and Nongalactic AstrophysicsAdvances in High Energy Physics
researchProduct

Axion cold dark matter: Status after Planck and BICEP2

2014

We investigate the axion dark matter scenario (ADM), in which axions account for all of the dark matter in the Universe, in light of the most recent cosmological data. In particular, we use the Planck temperature data, complemented by WMAP E-polarization measurements, as well as the recent BICEP2 observations of B-modes. Baryon Acoustic Oscillation data, including those from the Baryon Oscillation Spectroscopic Survey, are also considered in the numerical analyses. We find that, in the minimal ADM scenario, the full dataset implies that the axion mass m_a = 82.2 pm 1.1 {\mu}eV (corresponding to the Peccei-Quinn symmetry being broken at a scale f_a = (7.54 pm 0.10)*10^10 GeV), or m_a = 76.6 …

Particle physicsNuclear and High Energy PhysicsCold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencessymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)INFLATIONPlanckAxionPhysicsSpectral indexHigh Energy Physics::PhenomenologyFísicaPlanck temperatureINVISIBLE AXIONBARYON ACOUSTIC-OSCILLATIONS; DIGITAL SKY SURVEY; INVISIBLE AXION; COSMOLOGY; INFLATION; DISTANCEBaryonHigh Energy Physics - PhenomenologyCOSMOLOGYDISTANCEsymbolsDark energyAstronomiaDIGITAL SKY SURVEYBARYON ACOUSTIC-OSCILLATIONSAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

On the current status of Modified Gravity

2014

We revisit the cosmological viability of the Hu $\&$ Sawicki modified gravity scenario. The impact of such a modification on the different cosmological observables, including gravitational waves, is carefully described. The most recent cosmological data, as well as constraints on the relationship between the clustering parameter $\sigma_8$ and the current matter mass-energy density $\Omega_m$ from cluster number counts and weak lensing tomography, are considered in our numerical calculations. The strongest bound we find is $|f_{R0}| < 3.7 \times 10^{-6}$ at $95\%$~CL. Forthcoming cluster surveys covering 10,000 deg$^2$ in the sky, with galaxy surface densities of $\mathcal{O}(10)$~arcmin$^{…

High Energy Physics - TheoryHigh Energy Physics - PhenomenologyCosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Sterile neutrino models and nonminimal cosmologies

2012

Cosmological measurements are affected by the energy density of massive neutrinos. We extend here a recent analysis of current cosmological data to nonminimal cosmologies. Several possible scenarios are examined: a constant $w\ensuremath{\ne}\ensuremath{-}1$ dark energy equation of state, a nonflat universe, a time-varying dark energy component and coupled dark matter-dark energy universes or modified gravity scenarios. When considering cosmological data only, ($3+2$) massive neutrino models with $\ensuremath{\sim}0.5\text{ }\text{ }\mathrm{eV}$ sterile species are allowed at 95% confidence level. This scenario has been shown to reconcile reactor, LSND and MiniBooNE positive signals with nu…

PhysicsNuclear and High Energy PhysicsSterile neutrinoParticle physics010308 nuclear & particles physicsmedia_common.quotation_subjectFísicaLambda-CDM modelAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyUniversePhysical cosmologyMiniBooNEGeneral Relativity and Quantum CosmologyBig Bang nucleosynthesis13. Climate action0103 physical sciencesDark energyHigh Energy Physics::ExperimentNeutrino010306 general physicsmedia_common
researchProduct

Improvement of cosmological neutrino mass bounds

2016

The most recent measurements of the temperature and low-multipole polarization anisotropies of the cosmic microwave background from the Planck satellite, when combined with galaxy clustering data f ...

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsCosmic microwave backgroundAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsPolarization (waves)01 natural sciencesGalaxysymbols.namesake0103 physical sciencessymbolsNeutrinoPlanckAnisotropyCluster analysis010303 astronomy & astrophysicsHubble's lawPhysical Review D
researchProduct

Do current data prefer a nonminimally coupled inflaton?

2015

We examine the impact of a non-minimal coupling of the inflaton to the Ricci scalar, $\frac12 \xi R\phi^2$, on the inflationary predictions. Such a non-minimal coupling is expected to be present in the inflaton Lagrangian on fairly general grounds. As a case study, we focus on the simplest inflationary model governed by the potential $V\propto \phi^2$, using the latest combined 2015 analysis of Planck and BICEP2/Keck Array. We find that the presence of a coupling $\xi$ is favoured at a significance of $99\%$ CL, assuming that nature has chosen the potential $V\propto \phi^2$ to generate the primordial perturbations and a number of e-foldings $N=60$. Within the context of the same scenario, …

PhysicsNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsFOS: Physical sciencesFísicaSigmaAstrophysics::Cosmology and Extragalactic AstrophysicsInflaton01 natural sciencesSpectral lineGeneral Relativity and Quantum Cosmologysymbols.namesake13. Climate action0103 physical sciencessymbolsPlanck010306 general physicsLagrangianAstrophysics - Cosmology and Nongalactic AstrophysicsScalar curvaturePhysical Review D
researchProduct

Relic neutrinos, thermal axions, and cosmology in early 2014

2014

We present up to date cosmological bounds on the sum of active neutrino masses as well as on extended cosmological scenarios with additional thermal relics, as thermal axions or sterile neutrino species. Our analyses consider all the current available cosmological data in the beginning of year 2014, including the very recent and most precise Baryon Acoustic Oscillation (BAO) measurements from the Baryon Oscillation Spectroscopic Survey. In the minimal three active neutrino scenario, we find Sum m_nu &lt; 0.22 eV at 95% CL from the combination of CMB, BAO and Hubble Space Telescope measurements of the Hubble constant. A non zero value for the sum of the three active neutrino masses of about …

PhysicsSterile neutrinoParticle physicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundHigh Energy Physics::PhenomenologyCosmic background radiationFOS: Physical sciencesFísicaAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energyOmegaBaryonsymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)13. Climate actionsymbolsAstronomiaNeutrinoAxionHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Testing neutrino physics and dark radiation properties with cosmological measurements

2013

El Modelo Estándard de partículas fundamentales asume que hay tres especies de neutrinos sin masa que interactúan a través de la fuerza débil. Durante los últimos años, los experimentos con neutrinos solares, atmosférico, aquellos de reactores y aceleradores han aportado pruebas sólidas de la existencia de oscilaciones del neutrino. Esto implica que los neutrinos tienen masa. Sin embargo, los experimentos de oscilaciones determinan sólo la diferencias relativas de las masas de los neutrinos; la escala absoluta de masas puede determinarse mediante datos cosmológico. Las masas de los neutrinos afectan los distintos observables cosmológicos, in particular, a la evolución de las perturbaciones …

:FÍSICA [UNESCO]Astrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyUNESCO::FÍSICAHigh Energy Physics::ExperimentUNESCO::ASTRONOMÍA Y ASTROFÍSICAcosmology:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct