6533b825fe1ef96bd1283474
RESEARCH PRODUCT
Testing standard and nonstandard neutrino physics with cosmological data
Olga MenaElena GiusarmaRoland De Puttersubject
AstrofísicaNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic background radiationFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesCosmologyPower spectrumsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino oscillationTelescope010303 astronomy & astrophysicsDigital sky surveyPhysicsHubble constantCosmologia010308 nuclear & particles physicsMatter power spectrumBig-bang nucleosynthesisCMB cold spotHigh Energy Physics - Phenomenology13. Climate actionParameterssymbolsBaryon acoustic-oscillationsBaryon acoustic oscillationsNeutrinoData releaseAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawdescription
Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species in standard and nonstandard scenarios are computed using the most recent available cosmological data. Our cosmological data sets include the measurement of the baryonic acoustic oscillation (BAO) feature in the data release 9 CMASS sample of the baryon oscillation spectroscopic survey. We study in detail the different degeneracies among the parameters, as well as the impact of the different data sets used in the analyses. When considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from galaxy clustering measurements is approximately equally powerful as the shape information from the matter power spectrum. The most stringent bound we find is Sigma m(nu) 3 often claimed in the literature therefore remains at the 2 sigma level when considering up-to-date cosmological data sets. Measurements from the Wilkinson Microwave Anisotropy Probe combined with a prior on the Hubble parameter from the Hubble Space Telescope are very powerful in constraining either the sum of the three active neutrino masses or the number of massless neutrino species. If the former two parameters are allowed to freely vary, however, the bounds from the combination of these two cosmological probes get worse by an order of magnitude.
year | journal | country | edition | language |
---|---|---|---|---|
2012-11-09 | Physical Review D |