0000000001254276

AUTHOR

Giuseppina D'aguì

showing 8 related works from this author

Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian

2017

Abstract In the framework of variational methods, we use a two non-zero critical points theorem to obtain the existence of two positive solutions to Dirichlet boundary value problems for difference equations involving the discrete p -Laplacian operator.

Difference equationDiscrete boundary value problemTwo solution01 natural sciencesElliptic boundary value problemDirichlet distributionCritical point theory; Difference equations; Discrete boundary value problems; p-Laplacian; Positive solutions; Two solutions; Analysis; Applied MathematicsPositive solutionsymbols.namesakePoint (geometry)Boundary value problem0101 mathematicsMathematicsApplied Mathematics010102 general mathematicsMathematical analysisp-LaplacianAnalysiMixed boundary condition010101 applied mathematicssymbolsp-LaplacianCritical point theoryNonlinear boundary value problemLaplace operatorAnalysis
researchProduct

One-dimensional nonlinear boundary value problems with variable exponent

2018

In this paper, a class of nonlinear differential boundary value problems with variable exponent is investigated. The existence of at least one non-zero solution is established, without assuming on the nonlinear term any condition either at zero or at infinity. The approach is developed within the framework of the Orlicz-Sobolev spaces with variable exponent and it is based on a local minimum theorem for differentiable functions.

Variable exponent Sobolev spacemedia_common.quotation_subject02 engineering and technology01 natural sciences0202 electrical engineering electronic engineering information engineeringDiscrete Mathematics and CombinatoricsBoundary value problemDifferentiable function0101 mathematicsDifferential (infinitesimal)P(x)-LaplacianDiscrete Mathematics and Combinatoricmedia_commonMathematicsDirichlet problemDirichlet problemApplied Mathematics010102 general mathematicsMathematical analysisZero (complex analysis)AnalysiDirichlet problem; P(x)-Laplacian; Variable exponent Sobolev spaces; Analysis; Discrete Mathematics and Combinatorics; Applied MathematicsMixed boundary conditionInfinityNonlinear system020201 artificial intelligence & image processingAnalysis
researchProduct

Nonlinear elliptic equations involving the p-Laplacian with mixed Dirichlet-Neumann boundary conditions

2019

In this paper, a nonlinear differential problem involving the \(p\)-Laplacian operator with mixed boundary conditions is investigated. In particular, the existence of three non-zero solutions is established by requiring suitable behavior on the nonlinearity. Concrete examples illustrate the abstract results.

General MathematicsOperator (physics)lcsh:T57-57.97010102 general mathematicsMathematical analysisCritical points01 natural sciencesDirichlet distributionMixed problemCritical point010101 applied mathematicsNonlinear systemsymbols.namesakeSettore MAT/05 - Analisi Matematicalcsh:Applied mathematics. Quantitative methodsp-LaplacianNeumann boundary conditionsymbolsMathematics (all)Boundary value problem0101 mathematicsDifferential (mathematics)Critical points; Mixed problem; Mathematics (all)Mathematics
researchProduct

Triple solutions for nonlinear elliptic problems driven by a non-homogeneous operator

2020

Abstract Some multiplicity results for a parametric nonlinear Dirichlet problem involving a nonhomogeneous differential operator of p -Laplacian type are given. Via variational methods, the article furnishes new contributions and completes some previous results obtained for problems considering other types of differential operators and/or nonlinear terms satisfying different asymptotic conditions.

Dirichlet problemApplied Mathematics010102 general mathematicsMultiple solutionsp-LaplacianMultiple solutionType (model theory)Differential operator01 natural sciencesCritical point010101 applied mathematicsNonlinear systemOperator (computer programming)Critical point; Multiple solutions; Nonlinear elliptic problem; p-Laplacian; Variational methodsVariational methodsSettore MAT/05 - Analisi MatematicaNon homogeneousApplied mathematicsNonlinear elliptic problem0101 mathematicsLaplace operatorAnalysisMathematicsParametric statistics
researchProduct

Two Nontrivial Solutions for Robin Problems Driven by a p–Laplacian Operator

2020

By variational methods and critical point theorems, we show the existence of two nontrivial solutions for a nonlinear elliptic problem under Robin condition and when the nonlinearty satisfies the usual Ambrosetti-Rabinowitz condition.

Nonlinear systemPure mathematicsRobin problemSettore MAT/05 - Analisi Matematicap-LaplacianCritical point theoryMathematics::Analysis of PDEsp-LaplacianRobin problem p-Laplacian Critical point theoryCritical point (mathematics)Mathematics
researchProduct

Two non-zero solutions for Sturm–Liouville equations with mixed boundary conditions

2019

Abstract In this paper, we establish the existence of two non-zero solutions for a mixed boundary value problem with the Sturm–Liouville equation. The approach is based on a recent two critical point theorem.

Sturm–Liouville theoryCritical points01 natural sciencesCritical point (mathematics)Critical pointSturm–Liouville equationVariational methodsBoundary value problem0101 mathematicsBoundary value problem; Critical points; Mixed conditions; Sturm–Liouville equation; Variational methodsBoundary value problemMathematicsApplied Mathematics010102 general mathematicsMathematical analysisGeneral EngineeringVariational methodAnalysiGeneral MedicineMathematics::Spectral Theory010101 applied mathematicsComputational MathematicsMixed conditionGeneral Economics Econometrics and FinanceMixed conditionsAnalysis
researchProduct

Infinitely many solutions for a perturbed p-Laplacian boundary value problem with impulsive effects

2017

In this paper, we deal with the existence of weak solutions for a perturbed p-Laplacian boundary value problem with impulsive effects. More precisely, the existence of an exactly determined open interval of positive parameters for which the problem admits infinitely many weak solutions is established. Our proofs are based on variational methods.

Control and OptimizationApplied MathematicsPerturbed p-Laplacian boundary value problemCritical point theory; Impulsive effects; Infinitely many solutions; Perturbed p-Laplacian boundary value problem; Variational methods; Analysis; Geometry and Topology; Control and Optimization; Applied MathematicsVariational methodAnalysiImpulsive effectsInfinitely many solutionsImpulsive effectVariational methodsCritical point theoryInfinitely many solutionGeometry and TopologyAnalysis
researchProduct

Preface

2018

This issue of Discrete and Continuous Dynamical Systems-Series S focuses on the qualitative analysis of some concrete nonlinear problems, e.g., ordinary, partial differential equations, systems and inclusions. The ten contributions collected here give an overview on some very recent results on the existence, multiplicity and sign information of the solutions of a wide range of nonlinear differential problems involving different boundary value conditions and operators in divergence form. In our opinion, the synergy pointed out here between the classical nonlinear analysis methods, like the critical point theory, sub-super solutions methods, truncation and comparison techniques, Morse theory,…

Applied MathematicsAnalysiDiscrete Mathematics and CombinatoricsDiscrete Mathematics and CombinatoricAnalysisDiscrete & Continuous Dynamical Systems - S
researchProduct