6533b7dafe1ef96bd126e28b

RESEARCH PRODUCT

One-dimensional nonlinear boundary value problems with variable exponent

Giuseppina D'aguìAngela SciammettaGabriele Bonanno

subject

Variable exponent Sobolev spacemedia_common.quotation_subject02 engineering and technology01 natural sciences0202 electrical engineering electronic engineering information engineeringDiscrete Mathematics and CombinatoricsBoundary value problemDifferentiable function0101 mathematicsDifferential (infinitesimal)P(x)-LaplacianDiscrete Mathematics and Combinatoricmedia_commonMathematicsDirichlet problemDirichlet problemApplied Mathematics010102 general mathematicsMathematical analysisZero (complex analysis)AnalysiDirichlet problem; P(x)-Laplacian; Variable exponent Sobolev spaces; Analysis; Discrete Mathematics and Combinatorics; Applied MathematicsMixed boundary conditionInfinityNonlinear system020201 artificial intelligence & image processingAnalysis

description

In this paper, a class of nonlinear differential boundary value problems with variable exponent is investigated. The existence of at least one non-zero solution is established, without assuming on the nonlinear term any condition either at zero or at infinity. The approach is developed within the framework of the Orlicz-Sobolev spaces with variable exponent and it is based on a local minimum theorem for differentiable functions.

10.3934/dcdss.2018011http://hdl.handle.net/10447/318314