0000000001256400

AUTHOR

C. Silva

showing 12 related works from this author

Interaction of a Liquid Gallium Jet with ISTTOK Edge Plasmas

2008

The use of liquid metals as plasma facing components in tokamaks has recently experienced a renewed interest stimulated by their advantages in the development of a fusion reactor. Liquid metals have been proposed to solve problems related to the erosion and neutronic activation of solid walls submitted to high power loads allowing an efficient heat exhaust from fusion devices. Presently the most promising candidate materials are lithium and gallium. However, lithium has a short liquid state range when compared, for example, with gallium that has essentially better thermal properties and lower vapor pressure. To explore further these properties, ISTTOK tokamak is being used to test the inter…

Liquid metalJet (fluid)TokamakChemistryNuclear engineeringHydrostatic pressurechemistry.chemical_elementPlasmaFusion powerlaw.inventionlawGalliumAtomic physicsISTTOKAIP Conference Proceedings
researchProduct

The power threshold of H-mode access in mixed hydrogen–tritium and pure tritium plasmas at JET with ITER-like wall

2022

The heating power to access the high confinement mode (H-mode), PLH, scales approximately inversely with the isotope mass of the main ion plasma species as found in (protonic) hydrogen, deuterium and tritium plasmas in many fusion facilities over the last decades. In first dedicated L–H transition experiments at the Joint European Torus (JET) tokamak facility with the ITER-like wall (ILW), the power threshold, PLH, was studied systematically in plasmas of pure tritium and hydrogen–tritium mixtures at a magnetic field of 1.8 T and a plasma current of 1.7 MA in order to assess whether this scaling still holds in a metallic wall device. The measured power thresholds, PLH, in Ohmically heated t…

Nuclear and High Energy Physics:Física::Física de fluids [Àrees temàtiques de la UPC]IsòtopsL–H transitionTritium plasmasPaper ; magnetic confinement fusion ; fusion plasmas ; L-H transition ; JET tokamak ; tritium plasmasTritiumCondensed Matter Physicsjet tokamakddc:magnetic confinement fusionJET tokamakPhysics::Plasma PhysicsFusion plasmastritium plasmasPhysics::Space PhysicsMagnetic confinement fusionPhysics::Accelerator Physicsfusion plasmasTokamaksl-h transitionNuclear Fusion
researchProduct

First Results of the Testing of the Liquid Gallium Jet Limiter Concept for ISTTOK

2006

The use of liquid metals as plasma facing components in tokamaks has recently experienced a renewed interest stimulated by their advantages to the development of a fusion reactor. Liquid metals have been proposed to solve problems related to the erosion and neutronic activation of solid walls submitted to high power loads allowing an efficient heat exhaustion from fusion devices. Presently the most promising materials are Lithium and Gallium. ISTTOK, a small size tokamak, will be used to test the behavior of a liquid Gallium jet in the vacuum chamber and its influence on the plasma. This paper presents a description of the conceived setup as well as experimental results. The liquid Gallium …

Jet (fluid)Liquid metalMaterials scienceNuclear engineeringHydrostatic pressureAnalytical chemistrychemistry.chemical_elementFusion powerPhysics::Fluid DynamicschemistryPhysics::Plasma PhysicsLimiterVacuum chamberGalliumISTTOKAIP Conference Proceedings
researchProduct

HIGH GRADE GLIOMAS AND DIPG

2014

OncologyCancer Researchmedicine.medical_specialtybusiness.industry03 medical and health sciencesAbstracts0302 clinical medicineText miningOncology030220 oncology & carcinogenesisInternal medicinemedicineNeurology (clinical)business030217 neurology & neurosurgery
researchProduct

Abstracts of papers and posters safe handling of medicines

1993

Pharmacologybusiness.industrymedicinePharmaceutical SciencePharmacology (medical)PharmacyPharmacyGeneral MedicineMedical emergencyToxicologybusinessmedicine.diseaseSafe handlingPharmacy World & Science
researchProduct

Recent progress in L-H transition studies at JET: tritium, helium, hydrogen and deuterium

2022

Abstract We present an overview of results from a series of L–H transition experiments undertaken at JET since the installation of the ITER-like-wall (JET-ILW), with beryllium wall tiles and a tungsten divertor. Tritium, helium and deuterium plasmas have been investigated. Initial results in tritium show ohmic L–H transitions at low density and the power threshold for the L–H transition (P LH) is lower in tritium plasmas than in deuterium ones at low densities, while we still lack contrasted data to provide a scaling at high densities. In helium plasmas there is a notable shift of the density at which the power threshold is minimum ( n ¯ e , min ) to higher values relative to deuterium and …

Nuclear and High Energy PhysicsPhysics::Plasma PhysicstritiumL–H transitionPhysics::Atomic PhysicsheliumisotopeCondensed Matter PhysicsL-H transition
researchProduct

Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating

2017

We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed ‘three-ion’ scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen–deuterium mixtures.…

Astrophysical plasmasTokamakradio-frequency heatingCyclotronJoint European TorusPlasma heatingGeneral Physics and AstronomyFREQUENCY114 Physical sciences01 natural sciences7. Clean energyMagnetically confined plasmas010305 fluids & plasmaslaw.inventionIonPHYSICSPhysics and Astronomy (all)FUSIONMODE CONVERSIONlawPhysics::Plasma Physics0103 physical sciencesDielectric heating010306 general physicsPhysics[PHYS]Physics [physics]ta114Solar flare:Física [Àrees temàtiques de la UPC]Plasma dynamicsmulti-ion plasmasSettore FIS/01 - Fisica SperimentaleMagnetic confinement fusionPlasmaHE-3-RICH SOLAR-FLARESTècniques de plasmaJETCYCLOTRON RANGETOKAMAKPhysics::Space PhysicsAtomic physicsHE-3-RICH SOLAR-FLARES; MODE CONVERSION; CYCLOTRON RANGE; FUSION; JET; FREQUENCY; TOKAMAK; PHYSICS
researchProduct

Novel method for determination of tritium depth profiles in metallic samples

2019

Tritium accumulation in fusion reactor materials is considered a serious radiological issue, therefore a lot of effort has been concentrated on the development of radiometric techniques. A novel method, based on gradual dissolution, for the determination of the total tritium content and its depth profiles in metallic samples is demonstrated. This method allows for the measurement of tritium in metallic samples after their exposure to a hydrogen and tritium mixture, tritium containing plasma or after irradiation with neutrons resulting in tritium formation. In this method, successive layers of metal are removed using an appropriate etching agent in the controlled regime and the amount of evo…

inorganic chemicalsfusionNuclear and High Energy PhysicsMaterials scienceNuclear engineeringchemistry.chemical_elementheliumBlanket114 Physical sciences01 natural sciences010305 fluids & plasmasblanketMetalirradiated berylliumjet0103 physical sciencespolycyclic compounds010306 general physicsHeliumbreeding blanketJet (fluid)Fusiontritiumbehaviororganic chemicalshydrogen diffusiontemperatureiter-like-wallFusion powerfirst wallberylliumCondensed Matter Physicschemistryvisual_arttransportcardiovascular systemvisual_art.visual_art_mediumdepth profileTritiumBerylliumNuclear Fusion
researchProduct

Overview of the JET results

2015

Since the installation of an ITER-like wall, the JET programme has focused on the consolidation of ITER design choices and the preparation for ITER operation, with a specific emphasis given to the bulk tungsten melt experiment, which has been crucial for the final decision on the material choice for the day-one tungsten divertor in ITER. Integrated scenarios have been progressed with the re-establishment of long-pulse, high-confinement H-modes by optimizing the magnetic configuration and the use of ICRH to avoid tungsten impurity accumulation. Stationary discharges with detached divertor conditions and small edge localized modes have been demonstrated by nitrogen seeding. The differences in…

Chemical analysiMagnetic confinementEdge localized modeTokamak:Física [Ciências exactas e naturais]Nuclear engineeringplasma-facing componentsTungsten7. Clean energyiter-like walllaw.inventionheat loadsAlcator C-ModlawPlasma-facing componentalcator C-MODQCPhysicsJet (fluid)Thermally activatedDivertormagnetic confinementMagnetic confinement fusionTokamak deviceerosionCondensed Matter PhysicsChemical erosionPost mortem analysiCondensed Matter Physics; Nuclear and High Energy PhysicsBerylliumAtomic physicstokamaksTokamaksNuclear and High Energy Physicschemistry.chemical_elementImpurity accumulationCondensed Matter PhysicNuclear and High Energy Physics; Condensed Matter PhysicsTungstenFísica Física:Physical sciences [Natural sciences]divertorNuclear fusionNuclear and High Energy PhysicPhysics Physical sciencesGas fuel analysifuel retentionSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)operationOrders of magnitudechemistryJETtransportMagnetic configuration
researchProduct

Comparison of the structure of the plasma-facing surface and tritium accumulation in beryllium tiles from JET ILW campaigns 2011-2012 and 2013-2014

2019

In this study, beryllium tiles from Joint European Torus (JET) vacuum vessel wall were analysed and compared regarding their position in the vacuum vessel and differences in the exploitation conditions during two campaigns of ITER-Like-Wall (ILW) in 2011-2012 (ILW1) and 2013-2014 (ILW2) Tritium content in beryllium samples were assessed. Two methods were used to measure tritium content in the samples - dissolution under controlled conditions and tritium thermal desorption. Prior to desorption and dissolution experiments, scanning electron microscopy and energy dispersive x-ray spectroscopy were used to study structure and chemical composition of plasma-facing-surfaces of the beryllium sampl…

Fuel retentionPhysics::Medical Physics01 natural sciencesQuantitative Biology::Cell Behavior010305 fluids & plasmasiter-like walljoint european torusRETENTION010302 applied physicsJet (fluid)tritiumPhysicsMechanicsSurface (topology)Fusion Plasma and Space Physicslcsh:TK9001-9401surgical procedures operativecardiovascular systemJoint European TorusTritiumBerylliumBerylliumNuclear and High Energy PhysicsretentionTechnology and Engineeringanimal structuresMaterials scienceQuantitative Biology::Tissues and OrgansMaterials Science (miscellaneous)Joint European Toruschemistry.chemical_elementTritium114 Physical sciencesGeneral Relativity and Quantum CosmologyFusion plasma och rymdfysik0103 physical sciencesddc:530ITER-LIKE-WALLITER-like walltechnology industry and agriculturePlasmaiter-like-wallberylliumTRANSPORTfuel retentionbody regionsNuclear Energy and Engineeringchemistrytransportlcsh:Nuclear engineering. Atomic power
researchProduct

DARWIN: Towards the ultimate dark matter detector

2016

DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy …

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsdouble beta decay7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsNeutrino detectorHigh Energy Physics - Experiment (hep-ex)XenonWIMPPHOTOMULTIPLIERAXIONSphysics.ins-detsolar and atmospheric neutrinosPhysicsDark matter detectorTime projection chamberdark matter detectorsPhysicsSolar and atmospheric neutrinoInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicsNeutrino detectorSOLAR NEUTRINOSGASPhysical SciencesNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsGRAN SASSODark matter detectors; Double beta decay; Neutrino detectors; Solar and atmospheric neutrinosDark matterchemistry.chemical_elementFOS: Physical sciencesAstronomy & AstrophysicsLIQUID-XENON DETECTOR0202 Atomic Molecular Nuclear Particle And Plasma PhysicsSettore FIS/05 - Astronomia e AstrofisicaSEARCH0103 physical sciencesIsotopes of xenonZEPLIN-III[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAxionInstrumentation and Methods for Astrophysics (astro-ph.IM)Science & Technology010308 nuclear & particles physicshep-exAstronomyAstronomy and Astrophysics0201 Astronomical And Space ScienceschemistryHigh Energy Physics::ExperimentSCINTILLATIONneutrino detectorsastro-ph.IMJournal of Cosmology and Astroparticle Physics
researchProduct

Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating

2018

International audience; During the 2015--2016 JET campaigns, many efforts have been devoted to the exploration of high-performance plasma scenarios envisaged for DT operation in JET. In this paper, we review various key recent hybrid discharges and model the combined ICRF NBI heating. These deuterium discharges with deuterium beams had the ICRF antenna frequency tuned to match the cyclotron frequency of minority H at the centre of the tokamak coinciding with the second harmonic cyclotron resonance of D. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of D beam ions, allowing us to assess its impact on the neutron rate…

Nuclear and High Energy PhysicsLight nucleusfusionPlasma heatingicrf heatingNuclear engineeringion-cyclotron rangeCyclotronJET hybrid plasmaICRF heating; NBI heating; JET hybrid plasmas; fusion enhancement; ION-CYCLOTRON RANGE; ENHANCEMENT; FUSION7. Clean energy01 natural sciences010305 fluids & plasmaslaw.inventionICRF heatingfusion enhancementdt plasmaslawNBI heating0103 physical sciences010306 general physicsjet hybrid plasmastokamakenhancementfusion enhancement; ICRF heating; JET hybrid plasmas; NBI heatingnbi heatingJet (fluid)Emphasis (telecommunications)PlasmaCondensed Matter PhysicsJET hybrid plasmasSettore ING-IND/20 - Misure e Strumentazione NucleariresonanceEnvironmental science[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct