0000000001261378
AUTHOR
Dolores Martínez-rubio
Oxidative Stress, a Crossroad Between Rare Diseases and Neurodegeneration
Oxidative stress is an imbalance between production and accumulation of oxygen reactive species and/or reactive nitrogen species in cells and tissues, and the capacity of detoxifying these products, using enzymatic and non-enzymatic components, such as glutathione. Oxidative stress plays roles in several pathological processes in the nervous system, such as neurotoxicity, neuroinflammation, ischemic stroke, and neurodegeneration. The concepts of oxidative stress and rare diseases were formulated in the eighties, and since then, the link between them has not stopped growing. The present review aims to expand knowledge in the pathological processes associated with oxidative stress underlying …
Mutations in theMORC2gene cause axonal Charcot–Marie–Tooth disease
Charcot-Marie-Tooth disease (CMT) is a complex disorder with wide genetic heterogeneity. Here we present a new axonal Charcot-Marie-Tooth disease form, associated with the gene microrchidia family CW-type zinc finger 2 (MORC2). Whole-exome sequencing in a family with autosomal dominant segregation identified the novel MORC2 p.R190W change in four patients. Further mutational screening in our axonal Charcot-Marie-Tooth disease clinical series detected two additional sporadic cases, one patient who also carried the same MORC2 p.R190W mutation and another patient that harboured a MORC2 p.S25L mutation. Genetic and in silico studies strongly supported the pathogenicity of these sequence variant…
Charcot-Marie-Tooth disease: Genetic and clinical spectrum in a Spanish clinical series
Objectives: To determine the genetic distribution and the phenotypic correlation of an extensive series of patients with Charcot-Marie-Tooth disease in a geographically well-defined Mediterranean area. Methods: A thorough genetic screening, including most of the known genes involved in this disease, was performed and analyzed in this longitudinal descriptive study. Clinical data were analyzed and compared among the genetic subgroups. Results: Molecular diagnosis was accomplished in 365 of 438 patients (83.3%), with a higher success rate in demyelinating forms of the disease. The CMT1A duplication (PMP22 gene) was the most frequent genetic diagnosis (50.4%), followed by mutations in the GJB1…
The EGR2 gene is involved in axonal Charcot-Marie-Tooth disease
Background and purpose A three-generation family affected by axonal Charcot−Marie−Tooth disease (CMT) was investigated with the aim of discovering genetic defects and to further characterize the phenotype. Methods The clinical, nerve conduction studies and muscle magnetic resonance images of the patients were reviewed. A whole exome sequencing was performed and the changes were investigated by genetic studies, in silico analysis and luciferase reporter assays. Results A novel c.1226G>A change (p.R409Q) in the EGR2 gene was identified. Patients presented with a typical, late-onset axonal CMT phenotype with variable severity that was confirmed in the ancillary tests. The in silico studies sho…
Genetics of the Charcot-Marie-Tooth disease in the Spanish Gypsy population: the hereditary motor and sensory neuropathy-Russe in depth
Four private mutations responsible for three forms demyelinating of Charcot-Marie-Tooth (CMT) or hereditary motor and sensory neuropathy (HMSN) have been associated with the Gypsy population: the NDRG1 p.R148X in CMT type 4D (CMT4D/HMSN-Lom); p.C737_P738delinsX and p.R1109X mutations in the SH3TC2 gene (CMT4C); and a G>C change in a novel alternative untranslated exon in the HK1 gene causative of CMT4G (CMT4G/HMSN-Russe). Here we address the findings of a genetic study of 29 Gypsy Spanish families with autosomal recessive demyelinating CMT. The most frequent form is CMT4C (57.14%), followed by HMSN-Russe (25%) and HMSN-Lom (17.86%). The relevant frequency of HMSN-Russe has allowed us to inv…
Expanding the β-III Spectrin-Associated Phenotypes toward Non-Progressive Congenital Ataxias with Neurodegeneration
(1) Background: A non-progressive congenital ataxia (NPCA) phenotype caused by b-III spectrin (SPTBN2) mutations has emerged, mimicking spinocerebellar ataxia, autosomal recessive type 14 (SCAR14). The pattern of inheritance, however, resembles that of autosomal dominant classical spinocerebellar ataxia type 5 (SCA5). (2) Methods: In-depth phenotyping of two boys studied by a customized gene panel. Candidate variants were sought by structural modeling and protein expression. An extensive review of the literature was conducted in order to better characterize the SPTBN2-associated NPCA. (3) Results: Patients exhibited an NPCA with hypotonia, developmental delay, cerebellar syndrome, and cogni…